THE DEVELOPMENT OF EFFECTIVE METHODS FOR THE INVESTIGATION OF STABILITY OF DYNAMICAL SYSTEMS WITH AFTEREFFECT
DOI:
Keywords:
dynamical system, aftereffect, differential equation, difference equation, the Cauchy matrix, stability, oscillationAbstract
We consider the basic results obtained by a group of Perm mathematicians in 2013-15, in the framework of the execution of an initiative project supported by the RFBR and Perm Region, grant no.13-01-96050. The results represent effective conditions of certain asymptotic properties, primarily stability and oscillations, for continuous and discrete dynamical systems with aftereffect. The originality and significance of the obtained results are characterized by comparison with the best of the known results.
Supporting Agencies
Работа выполнена при финансовой поддержке РФФИ (проект № 13-01-96050).
References
- Malygina V., Chudinov K. Explicit conditions for the nonoscillation of difference equations with several delays // Electronic Journal of Qualitative Theory of Differential Equations. - 2013. - No 46. - R. 1-12. DOI
- Malygina V.V. O polozitel’nosti fundamental’nogo resenia raznostnogo uravnenia // Izv. vuzov. Matem. - 2014. - No 3. - S. 19-32.
- Sabatulina T.L., Malygina V.V. Ob ustojcivosti linejnogo differencial’nogo uravnenia s ogranicennym posledejstviem // Izv. vuzov. Matem. - 2014. - No 4. - S. 25-41.
- Cudinov K.M. Funkcional’no-differencial’nye neravenstva i ocenka funkcii Kosi uravnenia s posledejstviem // Tam ze. - S. 52-61.
- Mulukov M.V. Ob asimptoticeskoj ustojcivosti dvuparametriceskih sistem differencial’nyh uravnenij s zapazdyvaniem // Izv. vuzov. Matem. - 2014. - No 6. - S. 48-55.
- Sabatulina T., Malygina V. On positiveness of the fundamental solution for a linear autonomous differential equation with distributed delay // Electronic Journal of Qualitative Theory of Differential Equations. - 2014. - No 61. - R. 1-16.
- Malygina V.V., Mulukov M.V., Percev N.V. O lokal’noj ustojcivosti odnoj imodeli dinamiki populacii s posledejstviem // Sib. elektr. matem. izv. - 2014. - T. 11. - S. 951-957.
- Malygina V.V., Cudinov K.M. Ob ustojcivosti zapazdyvausih raznostnyh uravnenij s polozitel’noj funkciej Kosi // Sist. upr. inform. tehn. - 2014. - No 3.2(57). - S. 245-250.
- Kulikov A., Malygina V. On relation between uniform asymptotic stability and exponential stability of linear differential equations // Electronic Journal of Qualitative Theory of Differential Equations. - 2015. - No 65. - R. 1-8. DOI
- Balandin A.S., Sabatulina T.L. Lokal’naa ustojcivost’ odnoj modeli dinamiki populacii v usloviah vozdejstvia vrednyh vesestv // Sib. elektr. matem. izv. - 2015. - T. 12. - S. 610-624. DOI
- Chudinov K. Note on oscillation conditions for first-order delay differential equations // Electronic Journal of Qualitative Theory of Differential Equations. - 2016. - No 2. - R. 1-10. doi: 10.14232/ejqtde.2016.1.2.
- Malygina V.V., Cudinov K.M. Asimptotika resenij raznostnyh uravnenij s zapazdyvaniami // Izv. vuzov. Matem. - 2016. - No 7. - S. 66-82.
- Malygina V.V., Mulukov M.V. O lokal’noj ustojcivosti odnoj modeli dinamiki populacii s trema stadiami razvitia // Izv. vuzov. Matem. - 2017. - No 4. - S. 35-42.
Downloads
Published
2017-09-05
Issue
Section
Research: theory and experiment
How to Cite
Chudinov, K. . (2017). THE DEVELOPMENT OF EFFECTIVE METHODS FOR THE INVESTIGATION OF STABILITY OF DYNAMICAL SYSTEMS WITH AFTEREFFECT. Perm Federal Research Centre Journal, 2, 84-88. https://journal.permsc.ru/index.php/pscj/article/view/PSCJ2017n2p12