ANALYSIS OF STOCHASTIC PROCESSES OF DEFORMATION AND DESTRUCTION IN MODERN COMPOSITES WITH RANDOM STRUCTURES BASED ON MULTIPOINT APPROXIMATIONS OF THE SOLUTION TO ELASTIC BOUNDARY-VALUE PROBLEMS

Authors

  • N.V. Mikhailova Perm National Research Polytechnic University
  • M.A. Tashkinov Perm National Research Polytechnic University
  • V.E. Wildemann Perm National Research Polytechnic University

DOI:

Keywords:

composites, multi-point approach, moment functions, stochastic boundary value problem, stress and strain fields, statistical characteristics, fracture probability, random microstructure, fracture criteria, deformation processes

Abstract

The project aim is to use new multi-point approximations of solutions of boundary value problems of the mechanics of composites with a random structure for the analysis of stochastic processes of structural deformation and fracture of composites, modeling of micro- and macroscale failures.The analytical expressions for multi-point correlation functions of the first and second order stress and strain fields were derived in the components of the composite represented as homogeneous media. The restoration method of the distribution laws of structural stresses was developed to allow calculating the probability of a failure on two scale levels - structural and macroscopic, based on microstructural correlation functions of deformation fields, using actual geometry of the internal structure of the material. The relation between the probability of a failure at the micro and macro levels was established.Three-dimensional models of the internal structure of polydisperse textured matrix composites with elliptic inclusions were developed. The values of the structural correlation functions of higher orders were obtained for them. Approximating analytical expressions for structural correlation functions were calculated.The developed method is used for numerical calculation of the correlation functions of the fields in the elastic and elastic-plastic cases under various loading conditions.

Supporting Agencies
Работа выполнена при финансовой поддержке РФФИ и Правительства Пермского края (грант № 14-01-96024 и 16-41-590259).

Author Biographies

  • N.V. Mikhailova, Perm National Research Polytechnic University
    кандидат физико-математических наук, доцент кафедры механики композиционных материалов и конструкций
  • M.A. Tashkinov, Perm National Research Polytechnic University
    кандидат физико-математических наук, заведующий научно- исследовательской лабораторией интеллектуальных материалов и конструкций
  • V.E. Wildemann, Perm National Research Polytechnic University
    доктор физико-математических наук, директор Центра экспериментальной механики

References

  1. Vanin G.A. Mikromehanika kompozicionnyh materialov. - Kiev: Naukova dumka, 1985. - 302 s.
  2. Vil’deman V.E., Sokolkin U.V., Taskinov A.A. Mehanika neuprugogo deformirovania i razrusenia kompozicionnyh materialov / pod red. U.V. Sokolkina. - M.: Nauka. Fizmatlit, 1997. - 288 s.
  3. Volkov S.D., Stavrov V.P. Statisticeskaa mehanika kompozitnyh materialov. - Minsk: Izd-vo Belorus. gos. un-ta, 1978. - 208 s.
  4. Pan’kov A.A. Statisticeskaa mehanika p’ezokompozitov. - Perm’: Izd-vo Perm. gos. tehn. un-ta, 2009. - 480 s.
  5. Sokolkin U.V., Taskinov A.A. Mehanika deformirovania i razrusenia strukturno neodnorodnyh tel. - M.: Nauka, 1984. - 116 s.
  6. Taskinov M.A., Vil’deman V.E., Mihajlova N.V. Metod posledovatel’nyh priblizenij v stohasticeskoj kraevoj zadace teorii uprugosti strukturno-neodnorodnyh sred // Mehanika kompozicionnyh materialov i konstrukcij. - 2010. - T. 16. - No 3. - S. 369-384.
  7. Taskinov M.A., Mihajlova N.V. Mnogotocecnye priblizenia vyssih poradkov v kraevoj zadace uprugosti polidispersnyh kompozitov so slucajnoj strukturoj // Vest. Nizegorodskogo un-ta im. N.I. Lobacevskogo. - 2011. - No 4(4). - S. 1799-1800.
  8. Taskinov M.A. Stohasticeskoe modelirovanie processov deformirovania uprugoplasticeskih kompozitov so slucajnym raspolozeniem vklucenij s ispol’zovaniem momentnyh funkcij vysokih poradkov // Vest. Perm. nac. issled. politehn. un-ta. Mehanika. - 2014. - No 3. - S. 163-185. DOI
  9. Tashkinov M.A. Methods of Stochastic Mechanics for Characterization of Deformation in Randomly Reinforced Composite Materials // Mechanics of Advanced Materials / Eds. V.V. Silberschmidt, V.P. Matveenko. - Springer, 2015. - P. 43-78. DOI
  10. Taskinov M. Statisticeskie harakteristiki polej naprazenij i deformacij v komponentah kompozitov so sfericeskimi vkluceniami pri razlicnyh vidah makroodnorodnogo naprazennoimage deformirovannogo sostoania // Resenie inzenernyh zadac na vysokoproizvoditel’nom vycislitel’nom komplekse Permskogo nacional’nogo issledovatel’skogo politehniceskogo universiteta: monogr. / pod red. V.A. Modorskogo. - Perm’: Izd-vo Perm. nac. issled. politehn. un-ta, 2014. - C. 172-192.
  11. Taskinov M.A. Primenenie sistemy WOLFRAM MATHEMATICA dla vycislenia mnogomernyh integralov v zadacah stohasticeskoj mehaniki // Vysokoproizvoditel’nye parallel’nye vycislenia na klasternyh sistemah (HPC 2014): materialy XIV Mezdunar. konf. - Perm’: Izd-vo Perm. nac. issled. politehn. un-ta, 2014. - S. 432-439.
  12. Sermergor T.D. Teoria uprugosti mikroneodnorodnyh sred. - M.: Nauka, 1976. - 400 s.
  13. Horosun L.P. Metody slucajnyh funkcij v zadacah o makroskopiceskih svojstvah mikroneodnorodnyh sred // Prikl. mehanika. -1978. - T. 14. - Vyp. 2. - S. 3-17.

Published

2017-09-04

Issue

Section

Research: theory and experiment

How to Cite

Mikhailova, N. ., Tashkinov, M. ., & Wildemann, V. . (2017). ANALYSIS OF STOCHASTIC PROCESSES OF DEFORMATION AND DESTRUCTION IN MODERN COMPOSITES WITH RANDOM STRUCTURES BASED ON MULTIPOINT APPROXIMATIONS OF THE SOLUTION TO ELASTIC BOUNDARY-VALUE PROBLEMS. Perm Federal Research Centre Journal, 1, 69-75. https://journal.permsc.ru/index.php/pscj/article/view/PSCJ2017n1p11