Production of biologically active compounds from plant sterols using bacteria

Authors

  • E. M. Nogovitsina Институт экологии и генетики микроорганизмов УрО РАН

DOI:

Keywords:

biotransformation, bacteria, natural sterols, cholesterol, β-sitosterol, biologically active substances

Abstract

The paper describes the capabilities of bacteria as effective biocatalysts of the natural sterol transformation process to produce biologically active substances.

Supporting Agencies
Работа поддержана грантом Министерства образования и науки РФ в рамках Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» (соглашение № 8793).

Author Biography

  • E. M. Nogovitsina, Институт экологии и генетики микроорганизмов УрО РАН

    кандидат биологических наук, научный сотрудник лаборатории алканотрофных микроорганизмов

References

  1. Ahrem A.A., Titov U.A. Mikrobiologiceskie transformacii steroidov. - M.: Nauka, 1965. - 504 s.
  2. Grisko V.V., Nogovicina E.M., Ivsina I.B. Optimizacia uslovij biokataliticeskogo polucenia stigmast-4-en-3-ona // Himia prirodnyh soedinenij. - 2012. - No 3. - S. 390-392.
  3. Tolstikov A.G., Grisko V.V., Ivsina I.B. Enantioselektivnoe biokataliticeskoe okislenie organiceskih sul’fidov v hiral’nye sul’foksidy // Sovremennye problemy asimmetriceskogo sinteza. - Ekaterinburg, 2003. - S. 165-205.
  4. Alexander-Lindo R.L., Morrison E.Y.S.A., Nair M.G. Hypoglycaemic effect of stigmast-4-en-3-one and its corresponding alcohol from the bark of Anacardium occidentale (Cashew) // Phytother. Res. - 2004. - Vol. 18. - No 5. - P. 403-407.
  5. Amin H.A.S., El-Hadi A.A., Mohamed S.S. Immobilization of Mycobacterium sp. NRRL B-3805 cells onto radiation crosslinked PVA/PVP hydrogels for production of androstenones from b-sitosterol // Aust. J. Basic Appl. Sci. - 2010. - Vol. 4. - No 8. - P. 2196-2205.
  6. Andhale M.S., Sambrani S.A. Cholesterol biotransformation in monophasic systems by solvent tolerant Bacillus subtilis AF 333249 // Indian J. Biotechnol. - 2006. - Vol. 5. - No 3. - P. 389-393.
  7. Biellmann J.F. Resolution of alcohols by cholesterol oxidase from Rhodococcus erythropolis: Lack of enantiospecificity for the steroids // Chirality. 2001. - Vol. 13. - No 1. - P. 34-39.
  8. Biotransformation of cholesterol to 1,4-androstadiene-3,17-dione (ADD) by Nocardia species / P. Sharma, P.S. Slathia, P. Somal, P. Mehta // Ann. Microbiol. - 2012. - Vol. 62. - No 4. - P. 1651-1659.
  9. Biotransformation of phytosterol to produce androstadienedione by resting cells of Mycobacterium in cloud point system / Z. Wang, F. Zhao, D. Chen, D. Li // Process Biochem. - 2006. - Vol. 41. - No 3. - P. 557-561.
  10. Cholesterol oxidase: sources, physical properties and analytical applications / J. MacLachlan, A.T.L. Wotherspoon, R.O. Ansell, C.J.W. Brooks // J. Steroid Biochem. Mol. Biol. - 2000. - Vol. 72. - No 5. - P. 169-195.
  11. Chrysotile as a support for the immobilization of Mycobacterium sp. NRRL B-3805 cells for the bioconversion of b-sitosterol in an organic-aqueous two-liquid phase system / R. Wendhausen, M. Frigato, P. Fernandes, C.C.C.R. Carvalho, A. Cruz, H.M. Pinheiro, J.M.S. Cabral // J. Mol. Catal. B: Enzymatic. - 2005. - Vol. 32. - No 3. - P. 61-65.
  12. Dias A.C., Cabral J.M., Pinheiro H.M. Sterol side-chain cleavage with immobilized Mycobacterium cells in water-immiscible organic solvents // Enzym. Microb. Technol. - 1994. - Vol. 16. - No 8. - P. 708-714.
  13. Hydroxyl groups at C-3 and at C-17 of the unnatural enantiomer ent-androsta-5,9(11)-diene-3b,17b-diol are oxidised by cholesterol oxidase from Rhodococcus erythropolis / D. Kitamoto, S. Dieth, A. Burger, D. Tritscha, J.-F. Biellmann // Tetrahedron Lett. - 2001. - Vol. 42. - No 3. - P. 505-507.
  14. Identification of cholesterol oxidase from fast-growing mycobacterial strains and Rhodococcus sp. / D. Wilmanska, J. Dziadek, A. Sajduda, K. Milczarek, A. Jaworski, Y. Murooka // J. Ferment. Bioeng. - 1995. - Vol. 79. - No 2. - P. 119-124.
  15. Immobilization of mycobacterial cells onto silicone - assessing the feasibility of the immobilized biocatalyst in the production of androstenedione from sitosterol / M.J.C. Claudino, D. Soares, F. Van Keulen, M.P.C. Marques, J.M.S. Cabral, P. Fernandes // Bioresource Technology. - 2008. - Vol. 99. - No 7. - P. 2304-2311.
  16. Influence of hydroxypropyl-b-cyclodextrin on phytosterol biotransformation by different strains of Mycobacterium neoaurum / Y.-B. Shen, M. Wang, H.-N. Li, Y.-B. Wang, J.-M. Luo // J. Ind. Microbiol. Biotechnol. - 2012. - Vol. 39. - No 9. - P. 1253-1259.
  17. Kreit J., Lefebvre G., Germain P. Membrane-bound cholesterol oxidase from Rhodococcus sp. cells. Production and extraction // J. Biotechnol. - 1994. - Vol. 33. - No 15. - P. 271-282.
  18. Lecithin-enhanced biotransformation of cholesterol to androsta-1,4-diene-3,17-dione and androst-4-ene- 3,17-dione / Z.F. Wang, Y.L. Huang, J.F. Rathman, S.T. Yang // J. Chem. Technol. Biotecnol. - 2002. - Vol. 77. - No 12. - P. 1349-1357.
  19. Liu W.H., Lo C.K. Production of testosterone from cholesterol using a single-step microbial transformation by mutant of Mycobacterium sp. // J. Ind. Microbiol. Biotechnol. - 1997. - Vol. 19. - No 4. - P. 269-272.
  20. Lo C.K., Pan C.P., Liu W.H. Production of testosterone from phytosterol using a single-step microbial transformation by mutant of Mycobacterium sp. // J. Ind. Microbiol. Biotechnol. - 2002. - Vol. 28. - No 5. - P. 280-283.
  21. Malaviya A., Gomes J. Androstenedione production by biotransformation of phytosterols // Bioresour. Technol. - 2008. - Vol. 99. - No 15. - P. 6725-6737.
  22. Microbial transformation of phytosterols mixture from rice bran oil unsaponifiable matter by selected bacteria / L.A.R. Sallam, M.E. Osman, A.A. Hamdy, G.M. Zaghlol // World J. Sci. Technol. 2008. - Vol. 24. - No 9. - P. 1643-1656.
  23. Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08 / X.-y. Zhang, Y. Peng, Z.-r. Su, Q.-h. Chen, H. Ruan, G.-q. He // J. Zhejiang. Univ.- Sci. B (Biomed. Biotechnol.). - 2013. - Vol. 14. - No 2. - P. 132-143.
  24. Pawar K., Bhatt M. Accumulation of a pharmacologically important 17-ketosteroid during side chain cleavage of cholesterol by Pseudomonas putida MTCC 1259 // World J. Sci. Technol. - 2011. - Vol. 1. - No 5. - P. 62-65.
  25. Pollegioni L., Piubelli L., Mollas G. Cholesterol oxidase: biotechnological applications // FEBS J. - 2009. - Vol. 276. - No 23. - P. 6857-6870.
  26. Selective transesterification of stanols in mixtures comprising sterols and stanols / M.I. Basterrechea, M.A.F. Diaz, M.A. Rojas, M.E. Schersl. - 2006. Filed 08.08.2002. Published 26.02.2003. Appl. No EP20020255546.
  27. US patent. No. 4923403. Microbiological process for degradation of steroids / N.P. Ferreira. - 1990. Filed 15.08.1985. Published 08.05.1990. Appl. No 06/766.126.
  28. US patent No. 5264428. Use stigmasta-4-en-3-on in the treatment of androgen dependent disease / S. Streber. - 1993. Filed: 29.04.1992. Published: 23.11.1993. Appl. No 07/876.131.
  29. US patent No. 2004/0105931 A1. Enzymatic modification of sterols using sterol-specific lipase / S. Basheer, D. Plat. - 2004. Filed 03.04.2001. Published 03.06.2004. Appl. No 10/240.546.
  30. US patent No. 7638293 B2. Method / A. de Kreij, S.M. Madrid, J.D. Mikkelsen, J.B. Soe. - 2009. Filed 15.07.2005. Published 29.12.2009. Appl. No 11/182.480.

Published

2013-10-08

Issue

Section

Research: theory and experiment

How to Cite

Nogovitsina, E. M. (2013). Production of biologically active compounds from plant sterols using bacteria. Perm Federal Research Centre Journal, 2, 4-12. https://journal.permsc.ru/index.php/pscj/article/view/PSCJ2013n2p1