Использование бактерий для получения биологически активных соединений на основе растительных стеролов

Авторы

  • Е. М. Ноговицина Институт экологии и генетики микроорганизмов УрО РАН

DOI:

Ключевые слова:

биотрансформация, бактерии, природные стеролы, холестерол, β-ситостерол, биологически активные вещества

Аннотация

Охарактеризован потенциал бактерий в качестве эффективных биокатализаторов процесса трансформации природных стеролов с целью получения биологически активных веществ.

Поддерживающие организации
Работа поддержана грантом Министерства образования и науки РФ в рамках Федеральной целевой программы «Научные и научно-педагогические кадры инновационной России» (соглашение № 8793).

Биография автора

  • Е. М. Ноговицина, Институт экологии и генетики микроорганизмов УрО РАН

    кандидат биологических наук, научный сотрудник лаборатории алканотрофных микроорганизмов

Библиографические ссылки

  1. Ахрем А.А., Титов Ю.А. Микробиологические трансформации стероидов. – М.: Наука, 1965. – 504 с.
  2. Гришко В.В., Ноговицина Е.М., Ившина И.Б. Оптимизация условий биокаталитического получения стигмаст-4-ен-3-она // Химия природных соединений. – 2012. – № 3. – С. 390–392.
  3. Толстиков А.Г., Гришко В.В., Ившина И.Б. Энантиоселективное биокаталитическое окисление органических сульфидов в хиральные сульфоксиды // Современные проблемы асимметрического синтеза. – Екатеринбург, 2003. – С. 165–205.
  4. Alexander-Lindo R.L., Morrison E.Y.S.A., Nair M.G. Hypoglycaemic effect of stigmast-4-en-3-one and its corresponding alcohol from the bark of Anacardium occidentale (Cashew) // Phytother. Res. – 2004. – Vol. 18. – № 5. – P. 403–407.
  5. Amin H.A.S., El-Hadi A.A., Mohamed S.S. Immobilization of Mycobacterium sp. NRRL B-3805 cells onto radiation crosslinked PVA/PVP hydrogels for production of androstenones from β-sitosterol // Aust. J. Basic Appl. Sci. – 2010. – Vol. 4. – № 8. – P. 2196–2205.
  6. Andhale M.S., Sambrani S.A. Cholesterol biotransformation in monophasic systems by solvent tolerant Bacillus subtilis AF 333249 // Indian J. Biotechnol. – 2006. – Vol. 5. – № 3. – P. 389–393.
  7. Biellmann J.F. Resolution of alcohols by cholesterol oxidase from Rhodococcus erythropolis: Lack of enantiospecificity for the steroids // Chirality. 2001. – Vol. 13. – № 1. – P. 34–39.
  8. Biotransformation of cholesterol to 1,4-androstadiene-3,17-dione (ADD) by Nocardia species / P. Sharma, P.S. Slathia, P. Somal, P. Mehta // Ann. Microbiol. – 2012. – Vol. 62. – № 4. – P. 1651–1659.
  9. Biotransformation of phytosterol to produce androstadienedione by resting cells of Mycobacterium in cloud point system / Z. Wang, F. Zhao, D. Chen, D. Li // Process Biochem. – 2006. – Vol. 41. – № 3. – P. 557–561.
  10. Cholesterol oxidase: sources, physical properties and analytical applications / J. MacLachlan, A.T.L. Wotherspoon, R.O. Ansell, C.J.W. Brooks // J. Steroid Biochem. Mol. Biol. – 2000. – Vol. 72. – № 5. – P. 169–195.
  11. Chrysotile as a support for the immobilization of Mycobacterium sp. NRRL B-3805 cells for the bioconversion of β-sitosterol in an organic-aqueous two-liquid phase system / R. Wendhausen, M. Frigato, P. Fernandes, C.C.C.R. Carvalho, A. Cruz, H.M. Pinheiro, J.M.S. Cabral // J. Mol. Catal. B: Enzymatic. – 2005. – Vol. 32. – № 3. – P. 61–65.
  12. Dias A.C., Cabral J.M., Pinheiro H.M. Sterol side-chain cleavage with immobilized Mycobacterium cells in water-immiscible organic solvents // Enzym. Microb. Technol. – 1994. – Vol. 16. – № 8. – P. 708–714.
  13. Hydroxyl groups at C-3 and at C-17 of the unnatural enantiomer ent-androsta-5,9(11)-diene-3β,17β-diol are oxidised by cholesterol oxidase from Rhodococcus erythropolis / D. Kitamoto, S. Dieth, A. Burger, D. Tritscha, J.-F. Biellmann // Tetrahedron Lett. – 2001. – Vol. 42. – № 3. – P. 505–507.
  14. Identification of cholesterol oxidase from fast-growing mycobacterial strains and Rhodococcus sp. / D. Wilmańska, J. Dziadek, A. Sajduda, K. Milczarek, A. Jaworski, Y. Murooka // J. Ferment. Bioeng. – 1995. – Vol. 79. – № 2. – P. 119–124.
  15. Immobilization of mycobacterial cells onto silicone – assessing the feasibility of the immobilized biocatalyst in the production of androstenedione from sitosterol / M.J.C. Claudino, D. Soares, F. Van Keulen, M.P.C. Marques, J.M.S. Cabral, P. Fernandes // Bioresource Technology. – 2008. – Vol. 99. – № 7. – P. 2304–2311.
  16. Influence of hydroxypropyl-β-cyclodextrin on phytosterol biotransformation by different strains of Mycobacterium neoaurum / Y.-B. Shen, M. Wang, H.-N. Li, Y.-B. Wang, J.-M. Luo // J. Ind. Microbiol. Biotechnol. – 2012. – Vol. 39. – № 9. – P. 1253–1259.
  17. Kreit J., Lefebvre G., Germain P. Membrane-bound cholesterol oxidase from Rhodococcus sp. cells. Production and extraction // J. Biotechnol. – 1994. – Vol. 33. – № 15. – P. 271–282.
  18. Lecithin-enhanced biotransformation of cholesterol to androsta-1,4-diene-3,17-dione and androst-4-ene- 3,17-dione / Z.F. Wang, Y.L. Huang, J.F. Rathman, S.T. Yang // J. Chem. Technol. Biotecnol. – 2002. – Vol. 77. – № 12. – P. 1349–1357.
  19. Liu W.H., Lo C.K. Production of testosterone from cholesterol using a single-step microbial transformation by mutant of Mycobacterium sp. // J. Ind. Microbiol. Biotechnol. – 1997. – Vol. 19. – № 4. – P. 269–272.
  20. Lo C.K., Pan C.P., Liu W.H. Production of testosterone from phytosterol using a single-step microbial transformation by mutant of Mycobacterium sp. // J. Ind. Microbiol. Biotechnol. – 2002. – Vol. 28. – № 5. – P. 280–283.
  21. Malaviya A., Gomes J. Androstenedione production by biotransformation of phytosterols // Bioresour. Technol. – 2008. – Vol. 99. – № 15. – P. 6725–6737.
  22. Microbial transformation of phytosterols mixture from rice bran oil unsaponifiable matter by selected bacteria / L.A.R. Sallam, M.E. Osman, A.A. Hamdy, G.M. Zaghlol // World J. Sci. Technol. 2008. – Vol. 24. – № 9. – P. 1643–1656.
  23. Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08 / X.-y. Zhang, Y. Peng, Z.-r. Su, Q.-h. Chen, H. Ruan, G.-q. He // J. Zhejiang. Univ.- Sci. B (Biomed. Biotechnol.). – 2013. – Vol. 14. – № 2. – P. 132–143.
  24. Pawar K., Bhatt M. Accumulation of a pharmacologically important 17-ketosteroid during side chain cleavage of cholesterol by Pseudomonas putida MTCC 1259 // World J. Sci. Technol. – 2011. – Vol. 1. – № 5. – P. 62–65.
  25. Pollegioni L., Piubelli L., Mollas G. Cholesterol oxidase: biotechnological applications // FEBS J. – 2009. – Vol. 276. – № 23. – P. 6857–6870.
  26. Selective transesterification of stanols in mixtures comprising sterols and stanols / M.I. Basterrechea, M.A.F. Diaz, M.A. Rojas, M.E. Schersl. – 2006. Filed 08.08.2002. Published 26.02.2003. Appl. № EP20020255546.
  27. US patent. No. 4923403. Microbiological process for degradation of steroids / N.P. Ferreira. – 1990. Filed 15.08.1985. Published 08.05.1990. Appl. № 06/766.126.
  28. US patent No. 5264428. Use stigmasta-4-en-3-on in the treatment of androgen dependent disease / S. Streber. – 1993. Filed: 29.04.1992. Published: 23.11.1993. Appl. № 07/876.131.
  29. US patent No. 2004/0105931 А1. Enzymatic modification of sterols using sterol-specific lipase / S. Basheer, D. Plat. – 2004. Filed 03.04.2001. Published 03.06.2004. Appl. № 10/240.546.
  30. US patent No. 7638293 B2. Method / A. de Kreij, S.M. Madrid, J.D. Mikkelsen, J.B. Søe. – 2009. Filed 15.07.2005. Published 29.12.2009. Appl. № 11/182.480.

Загрузки

Опубликован

2013-10-08

Выпуск

Раздел

Исследования: теория и эксперимент

Как цитировать

Ноговицина, Е. М. (2013). Использование бактерий для получения биологически активных соединений на основе растительных стеролов. Вестник Пермского федерального исследовательского центра, 2, 4-12. https://journal.permsc.ru/index.php/pscj/article/view/PSCJ2013n2p1