Numerical analysis of the dynamic characteristics of rotating deformed structures

Authors

  • Nikolay Alexeevich Shevelev Perm State Technical University
  • Igor Victorovich Dombrovskiy Perm State Technical University

DOI:

https://doi.org/10.7242/1999-6691/2010.3.1.10

Keywords:

numerical analysis, free and compelled fluctuations, stability

Abstract

This study presents an algorithm based on the finite element method for the numerical solution of the problem on free and forced vibrations of rotating dynamically symmetric bodies. To obtain all the information on «the dynamic passport of a system», in addition to the problem on free and forced vibrations of rotating elastic bodies it is necessary to consider the non-conservative elastic stability problem. Judging from the character of the found eigen values, the conclusion can be drawn regarding the stability of the system, for instance in the framework of Lyapunov's theorems on stability in a first approximation/ It is proposed to seek the eigen modes of the non-conservative problem in the form of an expansion in eigen modes of the conservative problem, which reduces the dimensionality of matrices and allows us to solve the complex eigen value problem using the developed and verified schemes. The amplitude-frequency characteristics of the non-conservative system are constructed for different values of the angular velocity parameter referred to stable and unstable modes.

Downloads

Download data is not yet available.

References

Troanovskij I.E., Sardakov I.N., Sevelev N.A. Problema sobstvennyh znacenij i form vrasausihsa deformiruemyh konstrukcij // PMM. - 1991. -T. 55, vyp. 5. - S. 857-864.
Bolotin V.V. Nekonservativnye zadaci uprugoj ustojcivosti. - M.: Fizmatgiz, 1961. - 339s.
Merkin D.R. Vvedenie v teoriu ustojcivosti dvizenia. - M.: Nauka, 1971. - 312s.
Sevelev N.A., Dombrovskij I.V. Vlianie predvaritel’nogo naprazennogo sostoania na dinamiceskie harakteristiki masinostroitel’nyh konstrukcij // Vycislitel’naa matematika i mehanika. - 2008. - T. 1, vyp.2. - S. 106-112.
Koltunov M.A., Kravcuk A.S., Majboroda V.P. Prikladnaa mehanika deformiruemogo tverdogo tela. - M.: Vyssaa skola, 1983. - 351s.
Koltunov M.A. Polzucest’ i relaksacia. - M.: Vyssaa skola, 1976. - 277s.
Zenkevic O. Metod konecnyh elementov v tehnike. - M.: Mir, 1975. - 541s.

Published

2010-10-01

Issue

Section

Articles

How to Cite

Shevelev, N. A., & Dombrovskiy, I. V. (2010). Numerical analysis of the dynamic characteristics of rotating deformed structures. Computational Continuum Mechanics, 3(1), 93-104. https://doi.org/10.7242/1999-6691/2010.3.1.10