Numerical simulation of natural vibration of a partially fluid-filled truncated conical shell in a gravity field

Authors

DOI:

https://doi.org/10.7242/1999-6691/2025.18.3.26

Keywords:

truncated conical shell, classical shell theory, ideal compressible fluid, FEM, free surface, sloshing, natural vibration, dynamic condensation

Abstract

In this article, the behavior of circular truncated conical shells partially filled with an ideal fluid is studied taking into account the gravitational effects on its free surface. The mathematical formulation of the problem of the elastic body dynamics is developed using the variational principle of virtual displacements and the relations of the classical theory of shells, which are based on the Kirchhoff-Love hypotheses. The behavior of the compressible fluid is described by the equations of a potential theory, which together with the boundary conditions are converted to a weak form using the Bubnov-Galerkin method. The hydrodynamic pressure exerted by the fluid on the inner surface of the shell is calculated using the linearized Bernoulli equation. The problem is solved in the framework of axisymmetric formulation based on a semi-analytical version of the finite element method. The natural frequencies are calculated using the QR transform. The identification of coupled vibration modes in the full frequency spectrum is accomplished through an iterative dynamic condensation procedure based on the Muller method.  The reliability of the results obtained within the framework of the developed numerical model is confirmed by comparison with known data using examples of elastic and rigid shells. The influence of the cone angle on the lower frequencies of sloshing and coupled vibration modes is analyzed for shells with different boundary conditions (rigidly clamped, simply supported and cantilevered shells), different linear dimensions and levels of filling of the shell with fluid. It has been demonstrated that the character of the change in lower frequencies is determined by the magnitude of the angle at the apex and is determined by its geometric parameters for coupled modes and is independent of them in the case of sloshing modes.

Downloads

Download data is not yet available.
Supporting Agencies
The work was carried out within the framework of the state assignment (topic registration number 124020700047-3) and the Program for the creation and development of a world-class scientific center "Supersonic" for 2020-2025 (implementation of the iterative dynamic condensation method).

References

Ibrahim R.A. Liquid Sloshing Dynamics: Theory and Applications. Cambridge University Press, 2005. 970 p.

Païdoussis M.P. Fluid-structure interactions: slender structures and axial flow. Vol. 1, 2nd edition. Elsevier Academic Press, 2014. 942 p.

Eswaran M., Saha U.K. Sloshing of liquids in partially filled tanks - A review of experimental investigations. Ocean Systems Engineering. 2011. Vol. 1, no. 2. P. 131–155. DOI: 10.12989/ose.2011.1.2.131

Zingoni A. Liquid-containment shells of revolution: A review of recent studies on strength, stability and dynamics. Thin-Walled Structures. 2015. Vol. 87. P. 102–114. DOI: 10.1016/j.tws.2014.10.016

Grigoliuk E.I., Shkliarchuk F.N. Equations of perturbed motion of a body with a thin-walled elastic shell partially pilled with a liquid. Journal of Applied Mathematics and Mechanics. 1970. Vol. 34, no. 3. P. 379–389. DOI: 10.1016/0021-8928(70)90084-5

Kuleshov V.B., Shveyko Yu.Yu. Neosesimmetrichnyye kolebaniya tsilindricheskikh obolochek, chastichno zapolnennykh zhidkost’yu. Izvestiya Akademii nauk SSSR. Mekhanika tverdogo tela. 1971. No. 3. P. 126–136.

Kondo H. Axisymmetric Free Vibration Analysis of a Circular Cylindrical Tank. Bulletin of JSME. 1981. Vol. 24, no. 187. P. 215–221. DOI: 10.1299/jsme1958.24.215

Balendra T., Ang K.K., Paramasivam P., Lee S.L. Free vibration analysis of cylindrical liquid storage tanks. International Journal of Mechanical Sciences. 1982. Vol. 24, no. 1. P. 47–59. DOI: 10.1016/0020-7403(82)90020-0

Chiba M., Yamaki N., Tani J. Free vibration of a clamped-free circular cylindrical shell partially filled with liquid—Part I: Theoretical analysis. Thin-Walled Structures. 1984. Vol. 2, no. 3. P. 265–284. DOI: 10.1016/0263-8231(84)90022-3

Chiba M., Yamaki N., Tani J. Free vibration of a clamped-free circular cylindrical shell partially filled with liquid—Part II: Numerical results. Thin-Walled Structures. 1984. Vol. 2, no. 4. P. 307–324. DOI: 10.1016/0263-8231(84)90002-8

Gupta R.K., Hutchinson G.L. Free vibration analysis of liquid storage tanks. Journal of Sound and Vibration. 1988. Vol. 122, no. 3. P. 491–506. DOI: 10.1016/S0022-460X(88)80097-X

Gonçalves P.B., Ramos N.R.S.S. Free vibration analysis of cylindrical tanks partially filled with liquid. Journal of Sound and Vibration. 1996. Vol. 195, no. 3. P. 429–444. DOI: 10.1006/jsvi.1996.0436

Babu S.S., Bhattacharyya S.K. Finite element analysis of fluid-structure interaction effect on liquid retaining structures due to sloshing. Computers & Structures. 1996. Vol. 59, no. 6. P. 1165–1171. DOI: 10.1016/0045-7949(95)00271-5

Lakis A.A., Neagu S. Free surface effects on the dynamics of cylindrical shells partially filled with liquid. Journal of Sound and Vibration. 1997. Vol. 207, no. 2. P. 175–205. DOI: 10.1006/jsvi.1997.1074

Sigrist J.-F. Modal analysis of fluid-structure interaction problems with pressure-based fluid finite elements for industrial applications. The International Journal of Multiphysics. 2007. Vol. 1, no. 1. P. 123–149. DOI: 10.1260/175095407780130553

Amabili M., Païdoussis M.P., Lakis A.A. Vibrations of partially filled cylindrical tanks with ring-stiffeners and flexible bottom. Journal of Sound and Vibration. 1998. Vol. 213, no. 2. P. 259–299. DOI: 10.1006/jsvi.1997.1481

Jeong K.-H., Lee S.-C. Hydroelastic vibration of a liquid-filled circular cylindrical shell. Computers & Structures. 1998. Vol. 66, no. 2/3. P. 173–185. DOI: 10.1016/S0045-7949(97)00086-2

Okazaki K., Tani J., Sugano M. Free Vibrations of a Laminated Composite Circular Cylindrical Shell Partially Filled with Liquid.. Transactions of the Japan Society of Mechanical Engineers Series C. 1999. Vol. 65, no. 640. P. 4597–4604. DOI: 10.1299/kikaic.65.4597

Pal N.C., Bhattacharyya S.K., Sinha P.K. Coupled Slosh Dynamics of Liquid-Filled, Composite Cylindrical Tanks. Journal of Engineering Mechanics. 1999. Vol. 125, no. 4. P. 491–495. DOI: 10.1061/(asce)0733-9399(1999)125:4(491)

Amabili M. Eigenvalue problems for vibrating structures coupled with quiescent fluids with free surface. Journal of Sound and Vibration. 2000. Vol. 231, no. 1. P. 79–97. DOI: 10.1006/jsvi.1999.2678

Biswal K.C., Bhattacharyya S.K., Sinha P.K. Dynamic response analysis of a liquid-filled cylindrical tank with annular baffle. Journal of Sound and Vibration. 2004. Vol. 274, no. 1/2. P. 13–37. DOI: 10.1016/S0022-460X(03)00568-6

Kim Y.-W., Lee Y.-S., Ko S.-H. Coupled vibration of partially fluid-filled cylindrical shells with ring stiffeners. Journal of Sound and Vibration. 2004. Vol. 276, no. 3–5. P. 869–897. DOI: 10.1016/j.jsv.2003.08.008

Lakis A.A., Bursuc G., Toorani M.H. Sloshing effect on the dynamic behavior of horizontal cylindrical shells. Nuclear Engineering and Design. 2009. Vol. 239, no. 7. P. 1193–1206. DOI: 10.1016/j.nucengdes.2009.03.015

Biswal K.C., Bhattacharyya S.K. Dynamic response of structure coupled with liquid sloshing in a laminated composite cylindrical tank with baffle. Finite Elements in Analysis and Design. 2010. Vol. 46, no. 11. P. 966–981. DOI: 10.1016/j.finel.2010.07.001

Askari E., Daneshmand F., Amabili M. Coupled vibrations of a partially fluid-filled cylindrical container with an internal body including the effect of free surface waves. Journal of Fluids and Structures. 2011. Vol. 27, no. 7. P. 1049–1067. DOI: 10.1016/j.jfluidstructs.2011.04.010

Gnitko V.I., Ogorodnyk U.E., Naumenko V.V., Strelnikova E.A. Partially filled shells of revolution under impulse and seismic loading. Problems of Computational Mechanics and Strength of Structures. 2012. No. 19. P. 65–72.

Degtyarev K., Glushich P., Gnitko V., Strelnikova E. Numerical Simulation of Free Liquid-Induced Vibrations in Elastic Shells. International Journal of Modern Physics and Applications. 2015. Vol. 1, no. 4. P. 159–168. DOI: 10.13140/RG.2.1.1857.5209

Kashani B.K., Sani A.A. Free vibration analysis of horizontal cylindrical shells including sloshing effect utilizing polar finite elements. European Journalof Mechanics- A/Solids. 2016. Vol. 58. P. 187–201. DOI: 10.1016/j.euromechsol.2016.02.002

Degtiariov K., Gnitko V., Naumenko V., Strelnikova E. BEM in free vibration analysis of elastic shells coupled with liquid sloshing. Vol. 61. 2015. P. 35–46. DOI: 10.2495/BEM380031

Ohayon R., Schotté J.-S. Modal Analysis of Liquid–Structure Interaction. Advances in Computational Fluid-Structure Interaction and Flow Simulation / ed. by B. Y., T. K. Springer International Publishing, 2016. P. 423–438. DOI: 10.1007/978-3-319-40827-9_33

Trotsenko V.A., Trotsenko Yu.V. Nonaxisymmetric Vibrations of a Shell of Revolution Partially Filled with Liquid. Journal of Mathematical Sciences. 2017. Vol. 220. P. 341–358. DOI: 10.1007/s10958-016-3188-0

Trotsenko Yu.V. Vibrations of Elastic Shells of Revolution Partially Filled with Ideal Liquid. Journal of Mathematical Sciences. 2018. Vol. 229. P. 470–486. DOI: 10.1007/s10958-018-3690-7

Khayat M., Baghlani A., Dehghan S.M. A semi-analytical boundary method in investigation of dynamic parameters of functionally graded storage tank. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2020. Vol. 42. 332. DOI: 10.1007/s40430-020-02407-1

Tiwari P., Maiti D.K., Maity D. 3-D sloshing of liquid filled laminated composite cylindrical tank under external excitation. Ocean Engineering. 2021. Vol. 239. 109788. DOI: 10.1016/j.oceaneng.2021.109788

Han Y., Zhu X., Guo W., Li T., Zhang S. Coupled vibration analysis of partially liquid-filled cylindrical shell considering free surface sloshing. Thin-Walled Structures. 2022. Vol. 179. 109555. DOI: 10.1016/j.tws.2022.109555

Utsumi M. Vibration analysis of cylindrical liquid storage tanks that considers excitation phase difference. Mechanical Engineering Journal. 2023. Vol. 10, no. 1. 22-00236. DOI: 10.1299/mej.22-00236

Liu J., Zhang W.-Q., Ye W.-B., Gan L., Qin L., Zang Q.-S., Wang H.-B. Forced vibration of liquid-filled composite laminated shell container considering fluid–structure interaction by the scaled boundary finite element method. Physics of Fluids. 2024. Vol. 36, no. 8. 087148. DOI: 10.1063/5.0221695

Tiwari P., Maiti D.K., Maity D. 3D sloshing frequency analysis of partially filled cylindrical laminated composite containers. International Journal of Advances in Engineering Sciences and Applied Mathematics. 2024. Vol. 16. P. 117–132. DOI: 10.1007/s12572-023-00341-8

Khorshidi K., Savvafi S., Zobeid S. Investigation of Free Vibration in Fluid-Loaded Cylindrical Shells with a Three-Layer Sandwich Wall and an Auxetic Central Layer. Mechanics of Advanced Composite Structures. 2025. Vol. 12, no. 1. P. 53–72. DOI: 10.22075/MACS.2024.33975.1672

Choudhary N., Degtyarev K., Kriutchenko D., Gnitko V., Strelnikova E. Shell-like structures interacting with liquids and their applications. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 2025. Vol. 105, no. 9. e70227. DOI: 10.1002/zamm.70227

Saljughi F. Analyzing frequency of conical (∆ shaped) tanks. Journal of Solid Mechanics. 2016. Vol. 8, no. 4. P. 773–780.

Bauer H.F. Liquid oscillations in conical containerforms. Acta Mechanica. 1982. Vol. 43. P. 185–200. DOI: 10.1007/BF01176282

Gavrilyuk I., Hermann M., Lukovsky I., Solodun O., Timokha A. Natural sloshing frequencies in rigid truncated conical tanks. Engineering Computations. 2008. Vol. 25, no. 6. P. 518–540. DOI: 10.1108/02644400810891535

Glushych P., Gnitko V., Naumenko V., Strelnikova E. Liquid own vibrations in rigid shells of revolution. Bulletin of the Kherson National Technical University. 2015. No. 3. P. 103–107.

Gnitko V., Degtyariov K., Naumenko V., Strelnikova E. BEM and FEM Analysis of the Fluid-Structure Interaction in Tanks With Baffles. International Journal of Computational Methods and Experimental Measurements. 2017. Vol. 5, no. 3. P. 317–328. DOI: 10.2495/CMEM-V5-N3-317-328

Choudhary N., Rana S., Degtyarev K., Kriutchenko D., Strelnikova E. Numerical study on sloshing in coaxial shells. Vibroengineering Procedia. 2024. Vol. 55. P. 86–90. DOI: 10.21595/vp.2024.24091

Lukovsky I.A., Timokha A.N. Multimodal Method in Sloshing. Journal of Mathematical Sciences. 2017. Vol. 220. P. 239–253. DOI: 10.1007/s10958-016-3181-7

Bochkarev S.A., Lekomtsev S.V. Parametric analysis of free vibration of a straight layered truncated conical shell containing a quiescent fluid. Thin-Walled Structures. 2025. Vol. 214. 113373. DOI: 10.1016/j.tws.2025.113373

Bochkarev S.A. Analysis of natural vibrations of truncated conical shells of variable thickness filled with fluid. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki. 2025. Vol. 35, no. 3. P. 452–468. DOI: 10.35634/vm250308

Bochkarev S.A., Lekomtsev S.V., Senin A.N. Natural vibrations and stability of loaded cylindrical shells partially filled with fluid, taking into account gravitational effects. Thin-Walled Structures. 2021. Vol. 164. 107867. DOI: 10.1016/j.tws.2021.107867

Bochkarev S.A., Lekomtsev S.V., Senin A.N. Numerical modeling of natural vibrations of coaxial shells partially filled with fluid, taking into account the effects on the free surface. PNRPU Mechanics Bulletin. 2022. No. 1. P. 23–35. DOI: 10.15593/perm.mech/2022.1.03

Vol’mir A.S. Obolichki v potoke zhidkosti i gaza. Zadachi gidrouprugosti. Moscow: Nauka, 1979. 320 p.

Bochkarev S.A., Matveenko V.P. Numerical study of the influence of boundary conditions on the dynamic behavior of a cylindrical shell conveying a fluid. Mechanics of Solids. 2008. Vol. 43, no. 3. P. 477–486. DOI: 10.3103/S0025654408030187

Biderman V.L. Mekhanika tonkostennykh konstruktsiy. Statika. Moscow: Mashinostroyeniye, 1977. 488 p.

Zienkiewicz O.C. The Finite Element Method in Engineering Science. London: McGraw Hill, 1971. 521 p.

Shivakumar K.N., Krishna Murty A.V. A high precision ring element for vibrations of laminated shells. Journal of Sound and Vibration. 1978. Vol. 58, no. 3. P. 311–318. DOI: 10.1016/S0022-460X(78)80040-6

Golub G.H., Van L.C.F. Matrix Computations. Baltimore: The Johns Hopkins University Press, 1996. 694 p.

Lehoucq R.B., Sorensen D.C., Yang C. ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. Society for Industrial, Applied Mathematics, 1998. 137 p. DOI: 10.1137/1.9780898719628

Matveenko V.P., Sevodin M.A., Sevodina N.V. Applications of Muller’s method and the argument principle to eigenvalue problems in solid mechanics. Computational Continuum Mechanics. 2014. Vol. 7, no. 3. P. 331–336. DOI: 10.7242/1999-6691/2014.7.3.32

Bochkarev S.A., Lekomtsev S.V. Analysis of natural vibration of truncated conical shells partially filled with fluid. International Journal of Mechanical System Dynamics. 2024. Vol. 4, no. 2. P. 142–152. DOI: 10.1002/msd2.12105

Published

2025-12-14

Issue

Section

Articles

How to Cite

Bochkarev, S. A., & Senin, A. N. (2025). Numerical simulation of natural vibration of a partially fluid-filled truncated conical shell in a gravity field. Computational Continuum Mechanics, 18(3), 354-367. https://doi.org/10.7242/1999-6691/2025.18.3.26