Modeling the temperature field dynamics during the Czochralski single crystal growth in a non-stationary approximation

Authors

DOI:

https://doi.org/10.7242/1999-6691/2025.18.2.17

Keywords:

Czochralski crystal growth, moving boundary problem, mathematical modeling, conservative numerical scheme

Abstract

The transient process of growing axisymmetric crystals by the liquid-encapsulated Czochralski method  is considered. The mathematical model accounts for heat transfer in the  crucible-crystal-melt-encapsulant, formation of the melt/encapsulant meniscus, crystallization interface  movement, and changes in crystal radius. A new algorithm was developed to determine the lateral surface shape of the crystal  during the process. The proposed numerical approach utilizes a geometrically conservative difference scheme that guarantees the fulfillment of conservation laws  of energy and mass. The special splitting technique is used to solve the corresponding set of finite difference equations. The proposed approach ensures the consistency of crystal shape evolution with conservation laws. The designed numerical procedure is used to evaluate the impact of external thermal regime on the shape of the growing crystal. When the heater temperature is maintained constant, the crystal radius gradually decreases over time. To study the influence of the external temperature field on the shape of the lateral surface, the mathematical model is supplemented with a proportional-integral temperature controller equation that links the change in heater temperature to the radius of the growing crystal. In a general case, the application of an integral temperature controller leads to fluctuations in the crystal radius around a set value, with both the frequency and amplitude of fluctuations increasing progressively. Based on the results of the numerical experiments, the parameter values for a proportional-integral temperature controller that ensure  the growth of crystals with a nearly constant radius are determined. The results of transient numerical simulations are compared with the results obtained using the quasi-steady-state model of crystal growth.

Downloads

Download data is not yet available.

References

Lyubimova T.P., Parshakova Ya.N. Influence of rotational vibrations on heat and mass transfer during vertical Bridgman growth of germanium crystals. Computational continuum mechanics. 2008. Vol. 1, no. 1. P. 57–67. DOI: 10.7242/1999-6691/2008.1.1.6

Lyubimova T.P., Fayzrakhmanova I.S. Numerical modeling of magnetic field influence on vertical Bridgman crystal growth. Computational continuum mechanics. 2008. Vol. 1, no. 3. P. 85–95. DOI: 10.7242/1999-6691/2008.1.3.30

Lyubimova T.P., Skuridin R.V. Control of thermo and solutocapillary flows in FZ crystal growth by high-frequency vibrations. Journal of Applied Mechanics and Technical Physics. 2017. Vol. 58. P. 1159–1170. DOI: 10.1134/S0021894417070070

Verezub N.A., Prostomolotov A.I. Hydromechanisc for crystal growth from water solutions. Computational continuum mechanics. 2022. Vol. 15, no. 1. P. 98–114.

Smirnova O.V., Kalaev V.V. 3D unsteady numerical analysis of conjugate heat transport and turbulent/laminar flows in LEC growth of GaAs crystals. International Journal of Heat and Mass Transfer. 2004b. Vol. 47, no. 2. P. 363–371. DOI: 10.1016/S0017-9310(03)00404-6

Fainberg J., Vizman D., Friedrich J., Mueller G. A new hybrid method for the global modeling of convection in CZ crystal growth configurations. Journal of Crystal Growth. 2007b. Vol. 303. P. 124–134. DOI: 10.1016/j.jcrysgro.2006.11.346

Bessonov O.A., Polezhaev V.I. Regime diagram and three-dimensional effects of convective interactions in the hydrodynamic Czochralski model. Fluid Dynamics. 2014. Vol. 49. P. 149–159. DOI: 10.1134/S0015462814020045

Chen S., Li S., Tan X. 3D Unsteady Simulation of the Transport Characteristics in the LEC Melt of In-Doped GaAs. International Journal of Multimedia and Ubiquitous Engineering. 2016b. Vol. 11. P. 21–30. DOI: 10.14257/ijmue.2016.11.5.03

Faiez R., Najafi F., Rezaei Y. Convection interaction in GaAs/LEC growth model. International Journal of Computational Engineering Research. 2015b. Vol. 5. P. 12–23. URL: https://www.ijceronline.com/papers/Vol5%5C_issue7/C0507012023.pdf

Verezub N., Prostomolotov A. Growth chamber gas dynamics in Cz silicon single crystal growth process. Modern Electronic Materials. 2024b. Vol. 10. P. 185–193. DOI: 10.3897/j.moem.10.3.140627

Cen X., Li Y.S., Zhan J. Three dimensional simulation of melt flow in Czochralski crystal growth with steady magnetic fields. Journal of Crystal Growth. 2012b. Vol. 340. P. 135–141. DOI: 10.1016/j.jcrysgro.2011.11.029

Atia A., Ghernaout B., Bouabdallah S., Bessaïh R. Three-dimensional oscillatory mixed convection in a Czochralski silicon melt under the axial magnetic field. Applied Thermal Engineering. 2016b. Vol. 105. P. 704–715. DOI: 10.1016/j.applthermaleng.2016.03.087

Kondratyev A., Demina S., Smirnov A., Kalaev V., Ratnieks G., Kadinski L., Sattler A. 3D unsteady and steady modeling of heat and mass transfer during Cz Si crystal growth with a horizontal magnetic field. International Journal of Heat and Mass Transfer. 2021b. Vol. 178. 121604. DOI: 10.1016/j.ijheatmasstransfer.2021.121604

Ding J., Li Y., Liu L. Effect of cusp magnetic field on the turbulent melt flow and crystal/melt interface during large-size Czochralski silicon crystal growth. International Journal of Thermal Sciences. 2021b. Vol. 170. 107137. DOI: 10.1016/j.ijthermalsci.2021.107137

Chen S., Liu W., Wen Z., Liu Y., Jiang F., Xue Z., Wei X., Li W. Effects of Induced Current in Crystals on the Melt Flow and the Melt–Crystal Interface during Industrial 300 mm Czochralski Silicon Crystal Growth under a Transverse Magnetic Field. Crystal Growth & Design. 2023b. Vol. 23. P. 4480–4490. DOI: 10.1021/acs.cgd.3c00227

Prostomolotov A.I., Verezub N.A. Mekhanika protsessov polucheniya kristallicheskikh materialov. Moscow, NITU «MISiS», 2023. 568 p.

Wang Z., Brown R.A. Simulation of almost defect-free silicon crystal growth. Journal of Crystal Growth. 2001b. Vol. 231. P. 442–447. DOI: 10.1016/S0022-0248(01)01433-6

Kumar M.A., Srinivasan M., Ramasamy P. Numerical simulation of thermal stress distributions in Czochralski-grown silicon crystals. AIP Conference Proceedings. 2018b. Vol. 1942. 100004. DOI: 10.1063/1.5028969

Wang Z., Ren Y., Ma W., et al. Crystal surface heat transfer during the growth of 300mm monocrystalline silicon by the Czochralski process. International Journal of Heat and Mass Transfer. 2025b. Vol. 236. 126259. DOI: 10.1016/j.ijheatmasstransfer.2024.126259

Mukaiyama Y., Sueoka K., Maeda S., Iizuka M., Mamedov V.M. Unsteady numerical simulations considering effects of thermal stress and heavy doping on the behavior of intrinsic point defects in large-diameter Si crystal growing by Czochralski method. Journal of Crystal Growth. 2020b. Vol. 532. 125433. DOI: 10.1016/j.jcrysgro.2019.125433

Chatelain M., Albaric M., Pelletier D., Veirman J., Letty E. Numerical method for thermal donors formation simulation during silicon Czochralski growth. Solar Energy Materials and Solar Cells. 2021b. Vol. 219. 110785. DOI: 10.1016/j.solmat.2020.110785

Li Z., Smirnov A. Application of computer modeling to pulling rate and productivity of Czochralski pullers in PV Si crystal growth. Journal of Crystal Growth. 2023b. Vol. 611. 127178. DOI: 10.1016/j.jcrysgro.2023.127178

Tang X., Chappa G.K., Vieira L., Holena M., Dropka N. Decision Tree-Supported Analysis of Gallium Arsenide Growth Using the LEC Method. Crystals. 2023b. Vol. 13. 1659. DOI: 10.3390/cryst13121659

CROWLEY A.B. Mathematical Modelling of Heat Flow in Czochralski Crystal Pulling. IMA Journal of Applied Mathematics. 1983b. Vol. 30. P. 173–189. DOI: 10.1093/imamat/30.2.173

Derby J.J., Brown R.A. On the dynamics of Czochralski crystal growth. Journal of Crystal Growth. 1987b. Vol. 83. P. 137–151. DOI: 10.1016/0022-0248(87)90514-8

Thomas P.D., Derby J.J., Atherton L.J., Brown R.A., Wargo M.J. Dynamics of liquid-encapsulated czochralski growth of gallium arsenide: Comparing model with experiment. Journal of Crystal Growth. 1989b. Vol. 96, no. 1. P. 135–152. DOI: 10.1016/0022-0248(89)90284-4

Van den Bogaert N., Dupret F. Dynamic global simulation of the Czochralski process I. Principles of the method. Journal of Crystal Growth. 1997b. Vol. 171. P. 65–76. DOI: 10.1016/S0022-0248(96)00488-5

Raufeisen A., Breuer M., Botsch T., Delgado A. Transient 3D simulation of Czochralski crystal growth considering diameter variations. Journal of Crystal Growth. 2009b. Vol. 311. P. 695–697. DOI: 10.1016/j.jcrysgro.2008.09.073

Sabanskis A., Bergfelds K., Muiznieks A., Schröck T., Krauze A. Crystal shape 2D modeling for transient CZ silicon crystal growth. Journal of Crystal Growth. 2013b. Vol. 377. P. 9–16. DOI: 10.1016/j.jcrysgro.2013.04.055

Polezhaev V.I., Bessonov O.A., Nikitin N.V., Nikitin S.A. Convective interaction and instabilities in GaAs Czochralski model. Journal of Crystal Growth. 2001b. Vol. 230, no. 1/2. P. 40–47. Proceedings of the Third International Workshop om Modeling in Cr ystal Growth. DOI: 10.1016/S0022-0248(01)01317-3

Li M., Hu W., Chen N., Zeng D., Tang Z. Numerical analysis of LEC growth of GaAs with an axial magnetic field. International Journal of Heat and Mass Transfer. 2002b. Vol. 45, no. 13. P. 2843–2851. DOI: 10.1016/S0017-9310(01)00355-6

Biberin V.I., Osvensky V.B., Smirnov V.A. Issledovaniye gidrodinamiki rasplava v protsesse vyrashchivaniya arsenida galliya po Chokhral’skomu iz-pod sloya flyusa. Crystalography. 1985. Vol. 30. P. 980–985.

Kakimoto K., Eguchi M., Watanabe H., Hibiya T. Direct observation by X-ray radiography of convection of boric oxide in the GaAs liquid encapsulated czochralski growth. Journal of Crystal Growth. 1989b. Vol. 94, no. 2. P. 405–411. DOI: 10.1016/0022-0248(89)90015-8

Geng X., Wu X.B., Guo Z.Y. Numerical simulation of combined flow in Czochralski crystal growth. Journal of Crystal Growth. 1997b. Vol. 179, no. 1/2. P. 309–319. DOI: 10.1016/S0022-0248(97)00109-7

Hjellming L.N., Walker J.S. Melt motion in a Czochralski crystal puller with an axial magnetic field: motion due to buoyancy and thermocapillarity. Journal of Fluid Mechanics. 1987b. Vol. 182. P. 335–368. DOI: 10.1017/S0022112087002362

Berliner L.B., Gvelesiani L.A. Numeric computation of the radiative heat transfer for vertical crystal growth of CdZnTe single-crystals. Fine Chemical Technologies. 2010. Vol. 5, no. 5. P. 13–18.

Derby J.J., Brown R.A., Geyling F.T., Jordan A.S., Nikolakopoulou G.A. Finite Element Analysis of a Thermal-Capillary Model for Liquid Encapsulated Czochralski Growth. Journal of The Electrochemical Society. 1985b. Vol. 132, no. 2. P. 470–482. DOI: 10.1149/1.2113867

Surek T., Coriell S.R., Chalmers B. The growth of shaped crystals from the melt. Journal of Crystal Growth. 1980b. Vol. 50. P. 21–32. DOI: 10.1016/0022-0248(80)90227-4

Landau H.G. Heat conduction in a melting solid. Quarterly of Applied Mathematics. 1950b. Vol. 8. P. 81–94. DOI: 10.1090/qam/33441

Vinokur M. Conservation equations of gasdynamics in curvilinear coordinate systems. Journal of Computational Physics. 1974b. Vol. 14. P. 105–125. DOI: 10.1016/0021-9991(74)90008-4

Steger J.L. Implicit Finite-Difference Simulation of Flow about Arbitrary Two-Dimensional Geometries. AIAA Journal. 1978b. Vol. 16, no. 7. P. 679–686. DOI: 10.2514/3.7377

Hurle, D. T. J. Analytical representation of the shape of the meniscus in Czochralski growth. Journal of Crystal Growth. 1983b. Vol. 63, no. 1. P. 13–17. DOI: 10.1016/0022-0248(83)90421-9

Gusev A.O., Shcheritsa O.V., Mazhorova O.S. Conservative finite volume strategy for investigation of solution crystal growth techniques. Computers & fluids. 2020b. Vol. 202. 104501. DOI: 10.1016/j.compfluid.2020.104501

Gusev A.O., Mazhorova O.S. Geometric Conservation Law for Finite Volume Discretization of the Stefan Problem on Boundary-Fitted Grids. Differential Equations. 2024. Vol. 60, no. 7. P. 900–915. DOI: 10.1134/S0012266124070061

Thomas P.D., Lombard C.K. Geometric Conservation Law and Its Application to Flow Computations on Moving Grids. AIAA Journal. 1979b. Vol. 17. P. 1030–1037. DOI: 10.2514/3.61273

Demirdžić I., Perić M. Space conservation law in finite volume calculations of fluid flow. International Journal for Numerical Methods in Fluids. 1988b. Vol. 8. P. 1037–1050. DOI: 10.1002/fld.1650080906

Gusev A.O., Shcheritsa O.V., Mazhorova O.S. On the Properties of Conservative Finite Volume Scheme for the Two-Phase Stefan Problem. Differential Equations. 2022. Vol. 58, no. 7. P. 918–936. DOI: 10.1134/S0012266122070060

Derby J.J., Brown R.A. Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth: I. Simulation. Journal of Crystal Growth. 1986b. Vol. 74, no. 3. P. 605–624. DOI: 10.1016/0022-0248(86)90208-3

Motakef S. Thermoelastic analysis of GaAs in lec growth configuration: II. Temporal evolution of the stress field. Journal of Crystal Growth. 1988b. Vol. 88, no. 3. P. 341–352. DOI: 10.1016/0022-0248(88)90006-1

Bardsley W., Hurle D.T.J., Joyce G.C., Wilson G.C. The weighing method of automatic Czochralski crystal growth: II. Control equipment. Journal of Crystal Growth. 1977b. Vol. 40. P. 21–28. DOI: 10.1016/0022-0248(77)90028-8

Derby J.J., Brown R.A. On the quasi-steady-state assumption in modeling Czochralski crystal growth. Journal of Crystal Growth. 1988b. Vol. 87, no. 2/3. P. 251–260. DOI: 10.1016/0022-0248(88)90172-8

Gusev A.O., Mazhorova O.S. Quasi-steady-state numerical simulation of Czochralski single crystal growth. Keldysh Institute Preprints. 2023. No. 59. P. 1–20. DOI: 10.20948/prepr-2023-59

Published

2025-08-10

Issue

Section

Articles

How to Cite

Gusev, A. O. (2025). Modeling the temperature field dynamics during the Czochralski single crystal growth in a non-stationary approximation. Computational Continuum Mechanics, 18(2), 225-242. https://doi.org/10.7242/1999-6691/2025.18.2.17