A hybrid numerical-analytical approach for the simulation of antiplane vibrations of multilayered elastic waveguides with multiple inhomogeneities

Authors

DOI:

https://doi.org/10.7242/1999-6691/2025.18.2.11

Keywords:

hybrid computing scheme, semi-analytical representations of wave fields, finite element method, SH-waves, scattering by inhomogeneities

Abstract

Computer simulation of the excitation, propagation and scattering of elastic waves holds promise in designing structural health monitoring systems, in developing new ultrasonic non-destructive testing methods, in seismic sounding and sensorics and in other applications. This paper presents a further development of the hybrid numerical-analytical approach that allow analysis of the wave structure of the solution of dynamic boundary value problems in multilayer elastic waveguides with multiple local inhomogeneities, vibration sources and sensors. The approach is based on a grid solution of the corresponding dynamic problem in local domains with obstacles, which subsequently couples with the expansion in the form of traveling waves in homogeneous parts of the waveguide. In this form, the hybrid approach allows to construct solutions for complex geometries and defects, and it uses analytical representations to obtain a physically clear insight into the wave process for homogeneous parts of the waveguide. The proposed computational scheme is described for the problem of SH-wave propagation in a 2-D multilayer waveguide with single or multiple obstacles, and it can be generalized to the case of oscillations of isotropic and orthotropic materials. The hybrid approach is numerically verified based on comparison with the solutions of the considered problems obtained by other methods. The possibility of optimizing the developed computational scheme in the case of waveguides with multiple regions with inhomogeneities in order to reduce computational costs is indicated. The problem of diffraction of the SH-waves on a stringer, which were excited by a surface source of vibrations and measured by a piezoelectric sensor, is considered as an example of the use of a hybrid approach for parametric analysis of wave processes. 

Downloads

Download data is not yet available.
Supporting Agencies
The study was supported by the Russian Science Foundation grant No. 24-71-00105, https://rscf.ru/project/24-71-00105/.

References

Raghavan A., Cesnik C.E.S. Review of Guided-wave Structural Health Monitoring. The Shock and Vibration Digest. 2007b. Vol. 39. P. 91–114. DOI: 10.1177/0583102406075428

Giurgiutiu V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Elsevier Academic Press, 2014b. 1032 p.

Lowe M.J.S., Cawley P., Kao J.-Y., Diligent O. The low frequency reflection characteristics of the fundamental antisymmetric Lamb wave a0 from a rectangular notch in a plate. The Journal of the Acoustical Society of America. 2002b. Vol. 112, no. 6. P. 2612–2622. DOI: 10.1121/1.1512702

Memmolo V., Monaco E., Boffa N.D., Maio L., Ricci F. Guided wave propagation and scattering for structural health monitoring of stiffened composites. Composite Structures. 2018b. Vol. 184. P. 568–580. DOI: 10.1016/j.compstruct.2017.09.067

Lin G., Li Z.-y., Li J.-b. Wave scattering and diffraction of subsurface cavities in layered half-space for incident SV-P and SH waves. International Journal for Numerical and Analytical Methods in Geomechanics. 2020b. Vol. 44, no. 2. P. 239–260. DOI: 10.1002/nag.3013

Mirassi S., Rahnema H. Deep cavity detection using propagation of seismic waves in homogenous half-space and layered soil media. Asian Journal of Civil Engineering. 2020b. Vol. 21. P. 1431–1441. DOI: 10.1007/s42107-020-00288-2

Anisimkin V.I., Kuznetsova I.E., Kolesov V.V., Pyataikin I.I., Sorokin V.V., Skladnev D.A. Plate acoustic wave sensor for detection of small amounts of bacterial cells in micro-litre liquid samples. Ultrasonics. 2015b. Vol. 62. P. 156–159. DOI: 10.1016/j.ultras.2015.05.012

Yantchev V., Katardjiev I. Thin film Lamb wave resonators in frequency control and sensing applications: a review. Journal of Micromechanics and Microengineering. 2013b. Vol. 23, no. 4. 043001. DOI: 10.1088/0960-1317/23/4/043001

Naumenko N.F. Multilayered structures using thin plates of LiTaO3 for acoustic wave resonators with high quality factor. Ultrasonics. 2018b. Vol. 88. P. 115–122. DOI: 10.1016/j.ultras.2018.03.014

Alleyne D.N., Cawley P. The interaction of Lamb waves with defects. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1992b. Vol. 39, no. 3. P. 381–397. DOI: 10.1109/58.143172

Ma J., Simonetti F., Lowe M.J.S. Scattering of the fundamental torsional mode by an axisymmetric layer inside a pipe. The Journal of the Acoustical Society of America. 2006b. Vol. 120, no. 4. P. 1871–1880. DOI: 10.1121/1.2336750

Vasilchenko K.E., Nasedkin A.V., Soloviev A.N. A calculation of amplitude vs frequency characteristics for oscillations of permanent form using clusters technology in ACELAN. Computational Technologies. 2005. Vol. 10, no. 1. P. 10–20.

Golub M.V., Shpak A.N., Bute I., Fritzen K.P. Harmonic motion simulation and resonance frequency determination for a piezoelectric strip-like actuator using high precision finite element method. Computational Continuum Mechanics. 2015. Vol. 8, no. 4. P. 397–407. DOI: 10.7242/1999-6691/2015.8.4.34

Berenger J.- P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics. 1994b. Vol. 114, no. 2. P. 185–200. DOI: 10.1006/jcph.1994.1159

Skelton E.A., Adams S.D.M., Craster R.V. Guided elastic waves and perfectly matched layers. Wave Motion. 2007b. Vol. 44. P. 573–592. DOI: 10.1016/j.wavemoti.2007.03.001

Semblat J.- F., Lenti L., Gandomzadeh A. A simple multi-directional absorbing layer method to simulate elastic wave propagation in unbounded domains. International Journal for Numerical Methods in Engineering. 2011b. Vol. 85. P. 1543–1563. DOI: 10.1002/nme.3035

Bobrovnitskiy Y.I. Sootnosheniye ortogonal’nosti dlya voln Lemba. Soviet Physics. Acoustics. 1972. Vol. 18, no. 4. P. 513–515.

Fedoryuk M.V. Sootnosheniya tipa ortogonal’nosti v tverdykh volnovodakh. Soviet Physics. Acoustics. 1974. Vol. 20, no. 2. P. 310–314.

Moreau L., Castaings M., Hosten B., Predoi M.V. An orthogonality relation-based technique for post-processing finite element predictions of waves scattering in solid waveguides. The Journal of the Acoustical Society of America. 2006b. Vol. 120, no. 2. P. 611–620. DOI: 10.1121/1.2216563

Moreau L., Castaings M. The use of an orthogonality relation for reducing the size of finite element models for 3D guided waves scattering problems. Ultrasonics. 2008b. Vol. 48, no. 5. P. 357–366. DOI: 10.1016/j.ultras.2008.01.005

Predoi M.V., Castaings M., Moreau L. Influence of material viscoelasticity on the scattering of guided waves by defects. The Journal of the Acoustical Society of America. 2008b. Vol. 124, no. 5. P. 2883–2894. DOI: 10.1121/1.2977604

Koshiba M., Karakida S., Suzuki M. Finite-Element Analysis of Lamb Wave Scattering in an Elastic Plate Waveguide. IEEE Transactions on Sonics and Ultrasonics. 1984b. Vol. 31, no. 1. P. 18–24. DOI: 10.1109/T-SU.1984.31456

Karunasena W.M., Shah A.H., Datta S.K. Plane-Strain-Wave Scattering by Cracks in Laminated Composite Plates. Journal of Engineering Mechanics. 1991b. Vol. 117, no. 8. P. 1738–1754. DOI: 10.1061/(ASCE)0733-9399(1991)117:8(1738)

Glushkov E.V., Glushkova N.V., Evdokimov A.A. Hybrid Numerical-Analytical Scheme for Calculating Elastic Wave Diffraction in Locally Inhomogeneous Waveguides. Acoustical Physics. 2018. Vol. 64. P. 1–9. DOI: 10.1134/S1063771018010086

Glushkov E., Glushkova N., Evdokimov A. Hybrid Numerical-Analytical Scheme for Locally Inhomogeneous Elastic Waveguides. Proceedings of 14th World Congress on Computational Mechanics (WCCM) ECCOMAS Congress 2020. 2021b. P. 1–12. DOI: 10.23967/wccm-eccomas.2020.173

Benmeddour F., Treyssède F., Laguerre L. Numerical modeling of guided wave interaction with non-axisymmetric cracks in elastic cylinders. International Journal of Solids and Structures. 2011b. Vol. 48. P. 764–774. DOI: 10.1016/j.ijsolstr.2010.11.013

Lhémery A., Baronian V., Jezzine K., Bonnet-BenDhia A.-S. Simulation of inspections of elastic waveguides of arbitrary section containing arbitrary local discontinuities or defects. AIP Conference Proceedings. Vol. 1211. 2010b. P. 145–152. DOI: 10.1063/1.3362240

Spada A., Capriotti M., Lanza di Scalea F. Global-Local model for guided wave scattering problems with application to defect characterization in built-up composite structures. International Journal of Solids and Structures. 2020b. Vol. 182/183. P. 267–280. DOI: 10.1016/j.ijsolstr.2019.08.015

Khanazaryan A., Golub M. Hybrid method for modelling anti-plane vibrations of layered waveguides with bonded composite joints. Computational continuum mechanics. 2023. Vol. 16, no. 1. P. 101–114. DOI: 10.7242/1999-6691/2023.16.1.8

Galán J.M., Abascal R. Numerical simulation of Lamb wave scattering in semi-infinite plates. International Journal for Numerical Methods in Engineering. 2002b. Vol. 53. P. 1145–1173. DOI: 10.1002/nme.331

Baronian V., Lhémery A., Jezzine K. Hybrid SAFE/FE simulations of inspections of elastic waveguides containing several local discontinuities of defects. AIP Conference Proceedings. Vol. 30. 2011b. P. 183–190. DOI: 10.1063/1.3591855

Ramatlo D.A., Long C.S., Loveday P.W., Wilke D.N. A modelling framework for simulation of ultrasonic guided wave-based inspection of welded rail tracks. Ultrasonics. 2020b. Vol. 108. 106215. DOI: 10.1016/j.ultras.2020.106215

Babeshko V.A., Glushkov E.V., Zinchenko Z.F. Dinamika neodnorodnykh lineyno-uprugikh sred. Moscow: Nauka, 1989. 344 p.

Glushkov E.V., Glushkova N.V. Integral’nyye preobrazovaniya i volnovyye protsessy. Krasnodar: Kuban State University, 2017. 201 p.

Novikov O.I., Evdokimov A.A. Implementation of a hybrid numerical-analytical approach for solving the problems of SH-wave diffraction by arbitrary-shaped obstacles. Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation. 2020. Vol. 17, no. 2. P. 49–56. DOI: 10.31429/vestnik-17-2-49-56

Vorovich I.I., Babeshko V.A. Dinamicheskiye smeshannyye zadachi teorii uprugosti dlya neklassicheskikh oblastey. Moscow: Nauka, 1979. 320 p.

Zhang X.P., Galea S., Ye L., Mai Y.W. Characterization of the effects of applied electric fields on fracture toughness and cyclic electric field induced fatigue crack growth for piezoceramic PIC 151. Smart Materials and Structures. 2004b. Vol. 13, no. 1. P. N9–N16. DOI: 10.1088/0964-1726/13/1/N03

Raghavan A., Cesnik C.E.S. Finite-dimensional piezoelectric transducer modeling for guided wave based structural health monitoring. Smart Materials and Structures. 2005b. Vol. 14, no. 6. P. 1448–1461. DOI: 10.1088/0964-1726/14/6/037

Qiu H., Chen M., Li F. Selective excitation of high-order shear horizontal wave (SH1) by using a piezoelectric interdigital transducer. Mechanical Systems and Signal Processing. 2022b. Vol. 165. 108390. DOI: 10.1016/j.ymssp.2021.108390

Published

2025-08-10

Issue

Section

Articles

How to Cite

Evdokimov, A. A., Nets, P. A., Lesin, B. M., & Eremin, A. A. (2025). A hybrid numerical-analytical approach for the simulation of antiplane vibrations of multilayered elastic waveguides with multiple inhomogeneities. Computational Continuum Mechanics, 18(2), 140-154. https://doi.org/10.7242/1999-6691/2025.18.2.11