A finite element modeling of nonlinear problems of elasticity in absolute nodal coordinates using unstructured hexahedral meshes

Authors

DOI:

https://doi.org/10.7242/1999-6691/2024.17.2.21

Keywords:

absolute nodal coordinate formulation, unstructured hexahedral mesh, second-order automatic differentiation, Hessian matrix, HTT-α scheme, hyperelastic material model

Abstract

We consider a finite element approach to solving the problem of elasticity theory in terms of absolute nodal coordinate formulation (ANCF), in which  large body displacements are described in a global reference frame without using any local coordinate system. The main feature of the method is the absence of gyroscopic effects and, as a result,  constancy of the mass matrix and the vector of the generalized force of gravity. In contrast to the traditional ANCF approach, the sets of nodal degrees of freedom of the finite element are formed only on the basis  of absolute coordinates of nodes, which allows us to solve the problem using,  in particular,  unstructured hexahedral meshes. To construct the stiffness matrix, we apply a second-order automatic differentiation algorithm, which ensures its symmetrical form (Hessian matrix) and is analytically accurate in calculating the derivative. This approach also makes it possible to carry out calculations for models of hyperelastic materials without the corresponding Piola-Kirchhoff tensor. It has been shown that within the framework of discretization of the equation of motion, along with the well-known Newmark numerical integration scheme, it is possible to use the HTT-α scheme, which is unconditionally stable, second-order accurate and dissipative for high frequencies. We present several examples of solving static and dynamic elasticity problems for compressible and incompressible models of hyperelastic materials,  in which the functions of  internal energy density  of the body are specified in terms of the deformation gradient.

Downloads

Download data is not yet available.

References

Lushchin L.P., Sharanyuk A.V. Metod konechnykh elementov v zadachakh dinamiki svobodnykh konstruktsiy. TsAGI Science Journal. 2000. Vol. 31, no. 3/4. P. 156–177.

Shabana A.A., Hussien H.A., Escalona J.L. Application of the Absolute Nodal Coordinate Formulation to Large Rotation and Large Deformation Problems. Journal of Mechanical Design. 1998. Vol. 120, no. 2. P. 188–195. DOI: 10.1115/1.2826958.

Gerstmayr J., Sugiyama H., Mikkola A. Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems. Journal of Computational and Nonlinear Dynamics. 2013. Vol. 8, no. 3. 031016. DOI: 10.1115/1.4023487.

Otsuka K., Makihara K., Sugiyama H. Recent Advances in the Absolute Nodal Coordinate Formulation: Literature Review From 2012 to 2020. Journal of Computational and Nonlinear Dynamics. 2022. Vol. 17, no. 8. 080803. DOI: 10.1115/1.4054113.

Olshevskiy A., Dmitrochenko O., Kim C.-W. Three-Dimensional Solid Brick Element Using Slopes in the Absolute Nodal Coordinate Formulation. Journal of Computational and Nonlinear Dynamics. 2014. Vol. 9, no. 2. 021001. DOI: 10.1115/1.4024910.

Olshevskiy A., Dmitrochenko O., Yang H.-I., Kim C.-W. Absolute nodal coordinate formulation of tetrahedral solid element. Nonlinear Dynamics. 2017. Vol. 88, issue 4. P. 2457–2471. DOI:10.1007/s11071-017-3389-1.

Dmitrochenko O.N. Decimal nomenclature code dncmkot for identification of existing and automated generation of new finite elements. Bulletin of Bryansk state technical university. 2017. No. 1. P. 207–217. DOI: 10.12737/24955.

Dmitrochenko O.N. Extended decimal nomenclature dncm code for description of arbitrary finite element. Bulletin of Bryansk state technical university. 2017. No. 2. P. 155–166. DOI: 10.12737/article_59353e29d22508.11477409.

Kim H., Lee H., Lee K., Cho H., Cho M. Efficient flexible multibody dynamic analysis via improved C0 absolute nodal coordinate formulation-based element. Mechanics of Advanced Materials and Structures. 2022. Vol. 29, no. 25. P. 4125–4137. DOI:10.1080/15376494.2021.1919804.

Obrezkov L.P., Mikkola A., Matikainen M.K. Performance review of locking alleviation methods for continuum ANCF beam elements. Nonlinear Dynamics. 2022. Vol. 109. P. 531–546. DOI: 10.1007/s11071-022-07518-z.

Hilber H.M., Hughes T.J.R., Taylor R.L. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering & Structural Dynamics. 1977. Vol. 5. P. 283–292. DOI: 10.1002/EQE.4290050306.

Karavaev A.S., Kopysov S.P. Method of solution composition in contact problems with friction of deformable bodies. Vestnik Udmurtskogo Universiteta. Matematika.Mekhanika. Komp’yuternye Nauki. 2023. Vol.33, no. 4. P. 659–674. DOI: 10.35634/vm230408.

Bücker H.M., Corliss G.F. A Bibliography of Automatic Differentiation. Automatic Differentiation: Applications, Theory, and Implementations. Vol. 50 / ed. by M. Bücker, G. Corliss, U. Naumann, P. Hovland, B. Norris. 2006. P. 321–322. DOI: 10.1007/3-540-28438-9_28.

Semenov K. Automatic differentiation of function determined by its program code. Journal of Instrument Engineering. 2011. Vol. 54, no. 12. P. 34–39.

Vigliotti A., Auricchio F. Automatic Differentiation for Solid Mechanics. Archives of Computational Methods in Engineering. 2021. Vol. 28. P. 875–895. DOI: 10.1007/s11831-019-09396-y.

Karavaev A.S., Kopysov S.P., Ponomarev A.B. Algorithms for construction and refinement of unstructured quadrangle meshes on multiconnected domains. Computational Continuum Mechanics. 2012. Vol. 5, no. 2. P. 144–150. DOI: 10.7242/1999-6691/2012.5.2.17.

Karavaev A.S., Kopysov S.P. Generation of adaptive hexahedral meshes from surface and voxel geometric models. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki. 2023. Vol.33, no. 3. P. 534–547. DOI: 10.35634/vm230310.

Macneal R.H., Harder R.L. A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design. 1985. Vol. 1, issue 1. P. 3–20. DOI: 10.1016/0168-874X(85)90003-4.

Ebel H., Matikainen M.K., Hurskainen V.-V., Mikkola A. Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity. Nonlinear Dynamics. 2017. Vol. 88, no. 2. P. 1075–1091. DOI: 10.1007/s11071-016-3296-x.

Le Clézio H., Lestringant C., Kochmann D.M. A numerical two-scale approach for nonlinear hyperelastic beams and beam networks. International Journal of Solids and Structures. 2023. Vol. 276. DOI: 10.1016/j.ijsolstr.2023.112307.

Mengaldo G. Nonlinear Fluid-Structure interaction with applications in computational haemodynamics: PhD thesis / Mengaldo G. 2011. URL: https://www.politesi.polimi.it/retrieve/a81cb059-b461-616b-e053-1605fe0a889a/Master_thesis.pdf.

Published

2024-07-31

Issue

Section

Articles

How to Cite

Karavaev, A. S., & Kopysov, S. P. (2024). A finite element modeling of nonlinear problems of elasticity in absolute nodal coordinates using unstructured hexahedral meshes. Computational Continuum Mechanics, 17(2), 232-246. https://doi.org/10.7242/1999-6691/2024.17.2.21