Novel methods of collecting and analyzing lung aerosol samples for functional diagnostics of surfactant-dependent states

Authors

  • A.I. Mizev Institute of Continuous Media Mechanics UB RAS
  • A.V. Shmyrov Institute of Continuous Media Mechanics UB RAS
  • I.A. Mizeva Institute of Continuous Media Mechanics UB RAS
  • A.I. Shmyrova Institute of Continuous Media Mechanics UB RAS
  • I.M. Pshenichnikova-Peleneva Perm State Medical University named after E.A. Wagner

DOI:

https://doi.org/10.7242/2658-705X/2021.1.6

Keywords:

pulmonary surfactant, surface tension, capillary waves, tuberculosis

Abstract

The development of effective methods for non-invasive collection of lung aerosol samples and studying the surface activity of the obtained native material is relevant for the diagnosis of inflammatory processes of the lungs. In this work, a method based on the capture of pulmonary fluid droplets contained in the form of an aerosol in the air exhaled by a subject is developed and implemented in hardware – electrostatic aerosol trapping system (ESAT). The exhaled air flow is passed through the corona discharge region, where aerosol droplets receive an electric charge and are then transferred to the water surface by electrostatic forces. The lung surfactant contained in the trapped droplets forms an adsorbed layer, the surface properties of which are then investigated by tensiometric methods. Testing of the method and optimization of the installation design were carried out on a model aerosol of a weak electrolyte solution, which allowed measuring the capture efficiency through conducting conductometric measurements. A modified capillary wave method was used to study the surface properties of the lung surfactant. The method of collecting exhaled particles and studying the surface properties of the lung surfactant was tested on a group of healthy volunteers. A comparative study of the surface properties of native material collected by the electrostatic method from exhaled air and obtained during bronchoalveolar flushing in groups of healthy volunteers and patients with pulmonary tuberculosis was conducted.

Author Biographies

  • A.I. Mizev, Institute of Continuous Media Mechanics UB RAS
    доктор физико-математических наук, заведующий лабораторией гидродинамической устойчивости
  • A.V. Shmyrov, Institute of Continuous Media Mechanics UB RAS
    младший научный сотрудник
  • I.A. Mizeva, Institute of Continuous Media Mechanics UB RAS
    кандидат физико-математических наук, старший научный сотрудник лаборатории физической гидродинамики
  • A.I. Shmyrova, Institute of Continuous Media Mechanics UB RAS
    кандидат физико-математических наук, научный сотрудник лаборатории физической гидродинамики
  • I.M. Pshenichnikova-Peleneva, Perm State Medical University named after E.A. Wagner
    профессор кафедры, доктор медицинских наук

References

  1. Haslbeck K., Schwarz K., Hohlfeld J.M., Seume J.R., Koch W. Submicron droplet formation in the human lung// Journal of Aerosol Science. - 2010. - Vol. 41. - P. 429-438.
  2. Johnson G.R., Morawska L. The Mechanism of Breath Aerosol Formation // Journal of Aerosol Medicine and Pulmonary Drug Delivery. - 2009. - Vol. 22. - P. 229-237.
  3. Almstrand A.C., Bake B., Ljungstrom E., Larsson P., Bredberg A., Mirgorodskaya E., Olin A.C. Effect of airway opening on production of exhaled particles // Journal of applied physiology. - 2010. - Vol. 108. - P. 584-588.
  4. Fairchild C., Stampfer J. Particle concentration in exhaled breath. // American Industrial Hygiene Association Journal. - 1987. - Vol. 48. - P. 948-949.
  5. Papineni R., Rosenthal F. The size distribution of droplets in the exhaled breath of healthy human subjects. Journal of Aerosol Medicine: Deposition, Clearance, and Effects in the Lung. - 1997. - Vol. 10. - P. 105-116.
  6. Morawska L., Johnson G., Ristovski Z., Hargreaves M., Mengersen K., Corbett S., Chao C., Li Y., Katoshevski D. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities // Journal of Aerosol Science. - 2009. - Vol. 40. - P. 256-269.
  7. Olin A.C. Particles in exhaled air - a novel method of sampling non-volatiles in exhaled air. // Volatile biomarkers: Non-invasive diagnosis in physiology and medicine Elsevier. - 2013. - Vol. 20. - P. 383-391.
  8. Tinglev A.D., Ullah S., Ljungkvist G., Viklund E., Olin A.C., Beck O. Characterization of exhaled breath particles collected by an electret lter technique // Journal of Breath Research. - 2016. - Vol. 10. - P. 026001.
  9. Ullah S., Sandqvist S., Beck O. Measurement of Lung Phosphatidylcholines in Exhaled Breath Particles by a Convenient Collection Procedure // Analitical Chemistry. - 2015. - Vol. 87. - P. 11553-11560.
  10. Schwarz K., Biller H., Windt H., Koch W., Hohlfeld J.M. Characterization of exhaled particles from the healthy human lung|a systematic analysis in relation to pulmonary function variables. // Journal of aerosol medicine and pulmonary drug delivery. - 2010. - Vol. 23. P. 371-379.
  11. Johnson G., Morawska L., Ristovski Z., Hargreaves M., Mengersen K., Chao C., Wan M., Li Y., Xie X., Katoshevski D. [et al] Modality of human expired aerosol size distributions. // Journal of Aerosol Science. - 2011. - Vol. 42. - P. 839-851.
  12. Bake B., Ljungstrom E., Claesson A., Carlsen H.K., Holm M., Olin A.C. Exhaled particles after a standardized breathing maneuver // Journal of aerosol medicine and pulmonary drug delivery. - 2017. - Vol. 30. - P. 267-273.
  13. Schwarz K., Biller H., Windt H., Koch W., Hohlfeld J.M. Characterization of exhaled particles from the human lungs in airway obstruction // Journal of aerosol medicine and pulmonary drug delivery. - 2015. - Vol. 28. - P. 52-58.
  14. Clements J. Pulmonary surface tension and alveolar stability. // Technical report. CRDLR. U.S. Army Chemical Research and Development Laboratories. 1961. - Vol. 16. - P. 444-450.
  15. Hildebran J. Pulmonary surface film stability and composition. // J. of Applied Physiology Respiratory Environmental and Exercise Physiology. - 1979. - Vol. 47(3). - P. 604-611.
  16. Meyer K. Bronchoalveolar lavage as a diagnostic tool. // Seminars in Respiratory and Critical Care Medicine. - 2007. - Vol. 28(5). - P. 546-560.
  17. Walters E., Gardiner P. Bronchoalveolar lavage as a research tool // Thorax. - 1991. - Vol. 46(9). - P. 613-618.
  18. Horvath I. Exhaled breath condensate contains more than only volatiles. // European Respiratory Journal. - 2003. - Vol. 22. - P. 187-188.
  19. Kazakov V.N., Sinyachenko O.V., Fainerman V.B., Pison U., Miller R. Dynamic Surface Tensiometry in Medicine. Studies in Interface Science. - 2000, Elsevier.
  20. Hinds W.C. Aerosol technology: properties, behavior, and measurement of airborne particles. - 1999, John Wiley & Sons.
  21. Morozov V.N., Mikheev A.Y. A collection system for dry solid residues from exhaled breath for analysis via atomic force microscopy // Journal of Breath Research. - 2017. - Vol. 11. - P. 016006.
  22. Pardon G., Ladhani L., Sandstrm N., Ettori M., Lobov G., van der Wijngaart W. Aerosol sampling using an electrostatic precipitator integrated with a microfluidic interface. // Sensors and Actuators B: Chemical. - 2015. - Vol. 212. - P. 344-352.
  23. Notter R. Lung Surfactants: Basic Science and Clinical Applications (Lung Biology in Health and Disease). P.: CRC Press, 2000; 464 p.
  24. Bykov A., Loglio G., Miller R., Milyaeva O., Michailov A., Noskov B. Dynamic properties and relaxation processes in surface layer of pulmonary surfactant solutions // Colloids and Surfaces A: Physicochemical and Engineering Aspects. - 2019. - Vol. 573. - P. 14-21.
  25. Hohlfeld J. The role of surfactant in asthma // Respiratory Research. - 2001. - Vol. 30. - P. 1201-1204.
  26. Baritussio A. Lung surfactant, asthma, and allergens - A story in evolution. // American Journal of Respiratory and Critical Care Medicine. - 2004. - Vol. 169. - P. 550-551.
  27. Wright T., Notter R., Wang Z., Harmsen A., Gigliotti F. Pulmonary inflammation disrupts surfactant function during Pneumocystis carinii pneumonia. // Infection and Immunity. - 2001. - Vol. 69. - P. 758-764.
  28. Schwab U., Rohde K.H., Wang Z., Chess P.R., Notter R.H., Russell D.G. Transcriptional responses of Mycobacterium tuberculosis to lung surfactant // Microbial Pathogenesis. - 2009. - Vol. 46. - P. 185-193.
  29. Raghavendran K., Willson D., Notter R.N. Surfactant Therapy for Acute Lung Injury and Acute Respiratory Distress Syndrome // Critical Care Clinics. - 2011. - Vol. 27. - P. 525-559.
  30. Chroneos Z.C., Midde K., Sever-Chroneos Z., Jagannath C. Pulmonary surfactant and tuberculosis // Tuberculosis. - 2009. - Vol. 89. - P. 10-14.
  31. Chimote G., Banerjee R. Lung surfactant dysfunction in tuberculosis: Effect of mycobacterial tubercular lipids on dipalmitoylphosphatidylcholine surface activity // Colloids and Surfaces B: Biointerfaces. - 2005. - Vol. 45. - P. 215-223.
  32. Hasegawa T., Leblanc R.M. Aggregation properties of mycolic acid molecules in monolayer, 2003.
  33. Wang Z., Schwab U., Rhoades E., Chess P.R., Russell D.G., Notter R.H. Peripheral cell wall lipids of mycobacterium tuberculosis are inhibitory to surfactant function // Tuberculosis. - 2008. - Vol. 88. - P. 178-186.
  34. Shmyrov A., Mizev I., Mizeva A., Shmyrova A. Electrostatic precipitation of exhaled particles for tensiometric examination of pulmonary surfactant // Journal of Aerosol Science. - 2021. - Vol. 151. - ID 105622.
  35. Shmyrov A. [et al.] Capillary wave method: An alternative approach to wave excitation and to wave profile reconstruction //Physics of Fluids. - 2019. - T. 31. - No. 1. - 012101. DOI 10.1063/1.5060666/
  36. Smyrova A.I., Mizeva I.A., Artamonova P.A. Modifikacia metoda kapillarnyh voln // Vestnik Permskogo universiteta. Ser. Fizika. - 2018. - No 3(41). - s. 32-38.
  37. Shmyrova A., Shmyrov A., Mizeva I., Mizev A. Registration of high-frequency waves on the surface by the interference methods // EPJ Web of Conferences, - 2019. No 213, 02075. DOI

Published

2021-04-30

Issue

Section

Research: theory and experiment

How to Cite

Mizev, A. ., Shmyrov, A. ., Mizeva, I. ., Shmyrova, A. ., & Pshenichnikova-Peleneva, I. . (2021). Novel methods of collecting and analyzing lung aerosol samples for functional diagnostics of surfactant-dependent states. Perm Federal Research Centre Journal, 1, 64-72. https://doi.org/10.7242/2658-705X/2021.1.6