The influence of embedded optical fiber on the internal structure of polymer composite material
DOI:
https://doi.org/10.7242/2658-705X/2021.1.5Keywords:
polymer composite material, optical fiber, fiber-optic strain sensors, microstructure, resin pocketAbstract
In this work the samples made of polymer composite materials with embedded optical fibers were studied. The diameter of the optical fiber is comparable to the thickness of the layer of the composite material. So, the internal structure of the source material may be distorted in the vicinity of the optical fiber because of optical fiber embedment. Consequently, the formation of technological defects poses a threat to the integrity of the source material. Cross-sectional micrographs of various types of composite materials in the vicinity of the embedded optical fiber were obtained in the study. For a unidirectional composite material the formation of a resin pocket when the optical fiber is embedded perpendicular to the direction of the reinforcing fibers and its absence when the optical fiber is embedded parallel to the direction of the reinforcing fibers is confirmed. The analysis of images of woven polymer composite materials with twill weave did not reveal significant distort ons of the internal structure of the source material. Recommendations are given for preliminary treatment (polishing) of fiber-glass and carbonfiber reinforced plastic specimen surfaces.In contrast to the known results on the significant influence of the layering scheme on the efficiency of optical fibers embedment into composite materials, the data obtained in this study also indicate the effect of the material of the reinforcing fibers and the type of reinforcement on the quality of embedding optical fibers. These factors should be considered when designing and creating structures with embedded fiber-optic sensors.
References
- Roberts S.S.J., Davidson R. Mechanical properties of composite materials containing embedded fiber-optic sensors // Fiber Optic Smart Structures and Skins IV. - 1991. - Vol. 1588. - P. 326-341.
- Hadzic R., John S., Herszberg I. Structural integrity analysis of embedded optical fibre in composite structures // Composite Structures.- 1999. - Vol. 47. - No 1-4. - P. 759-765.
- Jensen D.W., Pascual J., August J.A. Performance of graphite/bismaleimide laminates with embedded optical fibers. I. Uniaxial tension // Smart Materials and Structures.- 1992. - Vol. 1. - No 1. - P. 24-30.
- Surgeon M., Wevers M. Static and dynamic testing of a quasi-isotropic composite with embedded optical fibres // Composites Part A: Applied Science and Manufacturing.- 1999. - Vol. 30. - No 3. - P. 317-324.
- Lee D.C., Lee J.J., Yun S.J. The mechanical characteristics of smart composite structures with embedded optical fiber sensors // Composite Structures.- 1995. - Vol. 32. - No 1-4. - P. 39-50.
- Silva J.M.A., Devezas T.C., Silva A.P., Ferreira J.A.M. Mechanical Characterization of Composites with Embedded Optical Fibers // J. Compos. Mater. - 2005. - Vol. 39. - No 14. - P. 1261-1281.
- Dasgupta A., Wan Y., Sirkis J.S. Prediction of resin pocket geometry for stress analysis of optical fibers embedded in laminated composites // Smart Materials and Structures.- 1992. - Vol. 1. - No 2. - P. 101-107.
- Lammens N., Luyckx G., Voet E., Van Paepegem W., Degrieck J. Finite element prediction of resin pocket geometry around embedded optical fiber sensors in prepreg composites // Composite Structures.- 2015. - Vol. 132. - P. 825-832.
- Lammens N., Luyckx G., Van Paepegem W., Degrieck J. Finite element prediction of resin pocket geometries around arbitrary inclusions in composites: Case study for an embedded optical fiber interrogator // Composite Structures.- 2016. - Vol. 146. - P. 95-107.
- Shivakumar K., Emmanwori L. Mechanics of failure of composite laminates with an embedded fiber optic sensor // Journal of Composite Materials.- 2004. - Vol. 38. - No 8. - P. 669-680.
- Al-Shawk A., Tanabi H., Sabuncuoglu B. Investigation of stress distributions in the resin rich region and failure behavior in glass fiber composites with microvascular channels under tensile loading // Composite Structures.- 2018. - Vol. 192. - P. 101-114.
- Singh H., Sirkis J.S., Dasgupta A. Microinteraction of optical fibers embedded in laminated composites // Fiber Optic Smart Structures and Skins IV. - 1991. - Vol. - 1588. - No 1 - 991 - P. 76-85.
- Czarnek R., Guo Y.F., Bennett K.D., Claus R.O. Interferometric Measurements Of Strain Concentrations Induced By An Optical Fiber Embedded In A Fiber Reinforced Composite // Fiber Optic Smart Structures and Skins. - 1989. - Vol. 0986. - P. 43.
- Voet E., Luyckx G., De Waele W., Degrieck J. Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: II. Experimental validation // Smart Materials and Structures.- 2010. - Vol. 19. - No 10. - P. 105018.
- Wagreich R.B., Atia W.A., Singh H., Sirkis J.S. Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre // Electronics Letters. - 1996. - Vol. 32. - No 13. - P. 1223.
- Udd E. Review of multi-parameter fiber grating sensors // Fiber Optic Sensors and Applications V. - 2007. - Vol. 6770. - P. 677002.
- Gafsi R., El-Sherif M.A. Analysis of Induced-Birefringence Effects on Fiber Bragg Gratings // Optical Fiber Technology.- 2000. - Vol. 6. - P. 299-323.
- Emmons M.C., Carman G.P., Mohanchandra K.P., Richards W.L. Characterization and birefringence effect on embedded optical fiber Bragg gratings // Health Monitoring of Structural and Biological Systems 2009. - 2009. - Vol. 7295. - No March. - P. 72950C.
- Peters K., Pattis P., Botsis J., Giaccari P. Experimental verification of response of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields // Optics and Lasers in Engineering.- 2000. - Vol. 33. - No 2. - P. 107-119.
- Peters K., Studer M., Botsis J. [et al] Embedded optical fiber Bragg grating sensor in a nonuniform strain field: Measurements and simulations // Experimental Mechanics. - 2001. - Vol. 41. - No 1. - P. 19-28.
- Huang S., Ohn M. M., LeBlanc M., Measures R.M. Continuous arbitrary strain profile measurements with fiber Bragg gratings // Smart Materials and Structures.- 1998. - Vol. 7. - No 2. - P. 248-256.
- Makhsidov, V., Fedotov, M., Shiyonok, A., Zuev M. For an issue of embedded optical fibre in CFRP and strain measurement with fibre Bragg gratings sensors // FSUE <>. - 2014. - Vol. 20. - No 4. - P. 568-574.
- Majumder M. [et al] Fibre Bragg gratings in structural health monitoring-Present status and applications // Sensors and Actuators A: Physical.- 2008. - Vol. 147. - No 1. - P. 150-164.
- Gebremichael Y.M., Li W., Boyle W.J.O. [et al] Integration and assessment of fibre Bragg grating sensors in an all-fibre reinforced polymer composite road bridge // Sensors and Actuators A: Physical.- 2005. - Vol. 118. - No 1. - P. 78-85.
- Matveenko V.P., Shardakov I.N., Voronkov A.A. [et al] Measurement of strains by optical fiber Bragg grating sensors embedded into polymer composite material // Structural Control and Health Monitoring. - 2018. - Vol. 25. - No 3. - P. e2118.
- Di Sante R. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications // Sensors. - 2015. - Vol. 15. - No 8. - P. 18666-18713.
- Matveenko V.P., Kosheleva N.A., Shardakov I.N., Voronkov A.A. Temperature and strain registration by fibre-optic strain sensor in the polymer composite materials manufacturing // International Journal of Smart and Nano Materials. - 2018. - Vol. 9. - No 2. - P. 99-110.