Physical and mathematical modelling of rib pillar deformation and failure processes

Authors

  • I.S. Lomakin Mining Institute UB RAS
  • A.A. Tsayukov Mining Institute UB RAS
  • A.V. Evseev Mining Institute UB RAS

DOI:

https://doi.org/10.7242/2658-705X/2021.1.4

Keywords:

salt rocks, rib pillars, mathematical modelling, strength criterion, failure, transversal deformation, load-carrying capacity

Abstract

Underground mining of water-soluble ores is associated with the necessity of mine protection from flooding. Reduction of risks of emergency situations at Perm Krai potash mining enterprises by means of real-time response to underground changes and by organizing appropriate preventive measures contributes to safe subsoil usage and the development of the region.The article presents the main results of research on experimental and theoretical justification for using relative transversal deformation of rib pillars as an informative parameter that allows a rapid assessment of underground mine load-carrying elements for Verkhnekamskoye potash deposit conditions. Experimental studies consisted of physical modelling of pillars deformation and failure processes on the basis of laboratory tests on uniaxial loading of salt rock cubic specimens of large sizes with simultaneous recording of their strain state. Theoretical studies included mathematical description of laboratory tests results and determination of medium model parameters that could reliably describe all stages of salt sample deformation. In order to estimate rib pillars relative transversal deformation values at which yield occurs the adaptation of developed model of medium to stoping room supporting elements taking into account their real size and geometrical form was carried out.

Supporting Agencies
Статья подготовлена при финансовой поддержке гранта РФФИ № 17-45-590681 р_а «Экспериментально-теоретические подходы к оценке долговременной устойчивости подземных горнотехнических объектов». Работа выполнена в рамках государственного задания; номер государственной регистрации темы АААА-А18-118040690032-2.

Author Biographies

  • I.S. Lomakin, Mining Institute UB RAS
    кандидат технических наук, научный сотрудник
  • A.A. Tsayukov, Mining Institute UB RAS
    инженер
  • A.V. Evseev, Mining Institute UB RAS
    кандидат технических наук, научный сотрудник

References

  1. Baklasov I.V. Geomehanika: ucebnik dla vuzov. V 2 t. / - M.: Izd-vo Moskovskogo gosudarstvennogo gornogo universiteta, 2004. - T. 1. Osnovy geomehaniki. - 208 s.
  2. Barah A.A., Asanov V.A., Pan’kov I.L. Fiziko-mehaniceskie svojstva solanyh porod Verhnekamskogo kalijnogo mestorozdenia: uceb. posobie /. - Perm’: izd-vo Perm. gos. tehn. un-ta, 2008. - 199 s.
  3. Barah A.A., Samodelkina N.A. Ob odnom kriterii procnosti gornyh porod // Cebysevskij sbornik. - 2017. - T. 18. - No 3 (63). - S. 72-87. - DOI
  4. Vremennaa instrukcia po rascetu celikov dla pologopadausih zalezej na glubine bolee 400 m i naklonnyh zalezej Zezkazganskogo mestorozdenia / Korporacia <>. - Almaty-Zezkazgan, 1998. - 158 s.
  5. Evseev A.V., Udarcev A.A. Metodika opredelenia normativnoj skorosti poperecnogo deformirovania mezdukamernyh celikov v laboratornyh usloviah // Gornoe eho. - 2019. - No 3. - S. 31-34. https:doi.org/10.7242/echo.2019.3.8.
  6. Metodiceskie rekomendacii k <>. Vved. v dejstvie s 30.03.2017 v red. 2014 g. - Perm’; Berezniki, 2014.
  7. Metodiceskoe rukovodstvo po vyboru geomehaniceskih parametrov tehnologii razrabotki ugol’nyh plastov korotkimi zaboami. - SPb.: VNIMI, 2003. - 30 s.
  8. Protosena A.G., Sokov A.N. Rascet parametrov celikov pri kamerno stolbovoj sisteme razrabotki rudnyh mestorozdenij s ispol’zovaniem trehmernyh modelej // Gornyj zurnal. - 2015. - No 11. - S. 20-23.
  9. Ukazania po zasite rudnikov ot zatoplenia i ohrane podrabatyvaemyh ob"ektov na Verhnekamskom mestorozdenii kalijno-magnievyh solej: utv. PAO <>, ZAO ISSLEDOVANIA: TEORIA I EKSPERIMENT 53 <>, OOO <>. - vved. v dejstvie 30.03.2017 v red. 2014 g. - Perm’; Berezniki, 2014. - 130 s.
  10. Cerepov A.A., Siraev S.N., Kulak V.U. Obosnovanie geomehaniceskih parametrov kamernoj sistemy razrabotki mosnogo pologogo ugol’nogo plasta // Gornyj informacionno-analiticeskij bulleten’. - 2017. - No 9. - S. 161-169.
  11. de Souza Neto Eduardo A., Peric Djordje, Owen David R. J. Computational Methods for Plasticity: Theory and Applications. - John Wiley & Sons Ltd. - Chichester, 2008. - 814 p.
  12. Hudecek V., Sancer J., Zubicek V., Golasowski J. Experience in the Adoption of Room and Pillar Mining Method in the Company OKD, a.s., Czech Republic // Journal of Mining Science. - 2017. - Vol. 53. - R. 99-108.
  13. Napa-Garcia G.F., Camara T.R., Torres V.F.N. Optimization of room-and-pillar dimensions using automated numerical models. // International Journal of Mining Science and Technology. - 2019. - Vol. 29. - Iss. 5. - P. 797-801.
  14. Zienkiewicz O.C., Taylor R.L., Zhu J.Z. The finite element method: Its basis and fundamentals. 7th ed. - Butterworth-Heinemann, Oxford, 2013.
  15. Zienkiewicz O.C., Taylor R.L., Fox D.D. The finite element method for solid and structural mechanics. 7th ed. - Butterworth-Heinemann, Waltham, 2014.

Published

2021-04-30

Issue

Section

Research: theory and experiment

How to Cite

Lomakin, I. ., Tsayukov, A. ., & Evseev, A. . (2021). Physical and mathematical modelling of rib pillar deformation and failure processes. Perm Federal Research Centre Journal, 1, 47-53. https://doi.org/10.7242/2658-705X/2021.1.4