Implantable polyurethaneurea medical devices: synthesis, surface modification,bioсompatibility

Authors

  • D.E. Yakusheva Institute of Technical Chemistry UB RAS
  • T.I. Karpunina Perm State Medical University named after E.A. Wagner
  • A.P. Godovalov Perm State Medical University named after E.A. Wagner
  • S.A. Astafeva Institute of Technical Chemistry UB RAS
  • A.I. Slobodinyuk Institute of Technical Chemistry UB RAS

DOI:

https://doi.org/10.7242/2658-705X/2021.1.2

Keywords:

polyurethane urea, surface modification, ion-beam treatment, adhesion of microorganisms, in vivo biocompatibility, in vitro hemocompatibility, erythrocyte lysis, cytokine production

Abstract

Four polyurethane samples have been synthesized. The structure of the materials has been studied by IR ATR spectroscopy. The biocompatibility of the initial materials was evaluated by in vitro hemolysis by photometric method. Polyurethane urea SPUM-1 has been found to be the most hemocompatible. Two groups of surface modification methods have been developed, a number of samples with organic moieties and radicals grafted to the surface of SPUM-1 have been obtained. It has been found that the introduction of long-chain hydrocarbon radicals and an aldehyde group into the surface layer structure results in a decrease in erythrocyte lysis. At СNaCl = 0,45% the erythrocyte lysis in the presence of these samples decreases by 20–25% compared to the initial sample. Biofilm formation on polyurethane samples has been studied by microplate photometry. It has been found that the presence of a chemically bonded quaternary dioctylammonium on the surface leads to a significant decrease in the a ount of adhered biofilm, since the protein content on the surface after incubation with s. epidermidis is 10 times lower than that of the initial sample. The biocompatibility of the initial and modified cord samples has been studied in vivo using experimental animals (rats). It was shown that both the initial and modified materials have a relatively good biocompatibility. According to the results of histological analysis, the best results demonstrated the sample with grafted aldehyde groups. Biocompatibility of implantable materials was studied by original technique using human blood leukocytes. The differences in the individual reactivity of blood cells taken from different donors have been found.

Supporting Agencies
Статья подготовлена при финансовой поддержке гранта РФФИ №17-43-590904 «Разработка методов и подходов для повышения биосовместимости и антибактериальных свойств имплантируемых медицинских изделий из полиуретана».

Author Biographies

  • D.E. Yakusheva, Institute of Technical Chemistry UB RAS
    кандидат технических наук, старший научный сотрудник
  • T.I. Karpunina, Perm State Medical University named after E.A. Wagner

    доктор биологических наук, профессор кафедры микробиологии и вирусологии

  • A.P. Godovalov, Perm State Medical University named after E.A. Wagner
    кандидат медицинских наук, ведущий научный сотрудник центральной научно-исследовательской лаборатории, доцент кафедры микробиологии и вирусологии
  • S.A. Astafeva, Institute of Technical Chemistry UB RAS

    кандидат технических наук, заведующий лабораторией структурно-химической модификации полимеро

  • A.I. Slobodinyuk, Institute of Technical Chemistry UB RAS

    кандидат технических наук, старший научный сотрудник

References

  1. Adipurnama M.C., Yang T., Ciach B., Butruk-Raszeja Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review // Biomater. Sci. - 2017. - No 5. - P. 22-37.
  2. Kjaergard H.K., Tingleff J., Abildgaard U., Pettersson G. Recurrent endocarditis in silver-coated heart valve prosthesis // J. Heart Valve Dis. - 1999. - Vol. 8. - P. 140-142.
  3. Cook G., Costerton J.W., Darouiche R.O. Direct confocal microscopy studies of the bacterial colonization in vitro of a silver-coated heart valve sewing cuff // Int. J. Antimicrob. Agents. - 2000. - Vol. 13. - P. 169-173.
  4. Darouiche R.O. Anti-Infective Efficacy of Silver-Coated Medical Prostheses // Clin. Infect. Dis. - 1999. - Vol. 29. - P. 1371-1377.
  5. Maki D.G. Infections caused by intravascular devices used for infusion therapy: pathogenesis, prevention, and management. In: Bisno A.L., Waldvogel F.A. ed. Infections associated with indwelling medical devices. 2nd ed. - Washington: American Society for Microbiology, 1994. - P. 155-212.
  6. Maki D.G., Band J.D. A comparative study of polyantibiotic and iodophor ointments in prevention of vascular catheter-related infection // Am. J. Med. - 1981. - Vol. 70. - P. 739 - 744.
  7. Shi Z. Preparation and characterization of crosslinked polyurethane-block-poly (trifluoropropylmethyl) siloxane elastomers with potential biomedicalapplications // Polymer International. - 2013. - Vol. 62. - No 9. - P. 1351-1357.
  8. Guelcher S.A., Srinivasan A., Dumas J.E., Didier J.E., McBride S., Hollinger J.O. Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates // Biomaterials. - 2008. - Vol. 29. - No 12. - P. 1762-1775.
  9. Kiziltay A., Marcos-Fernandez A., Roman J.S., Sousa R.A., Reis R.L., Hasirci V. [et al.] Poly (ester-urethane) scaffolds: Effect of structure on properties and osteogenic activity of stem cells // Journal of Tissue Engineering and Regenerative Medicine. - 2015. - No 9. - P. 930-942.
  10. Zhou X., Zhang T., Guo D., Gu N. A facile preparation of poly(ethyleneoxide)-modified medical polyurethane to improve hemocompatibility // Colloids and Surfaces A: Physicochemical and Engineering Aspects. - 2014. - Vol. 441. - P. 34-42.
  11. Zhou B., Hu Y., Li J., Li B. Chitosan-phosvitin antibacterial films fabricated via layer-by-layer deposition // International Journal of Biological Macromolecules. - 2014. - Vol. 64. - P. 402-408.
  12. Martinelli A., D’Ilario L., Francolini I. [et al.] Water state effect on drug release from an antibiotic loaded polyurethane matrix containing albumin nanoparticles // International Journal of Pharmaceutics. - 2011. - Vol. 407. - P. 197-206.
  13. Choi Yu., Nirmala R., Lee J. [et al.] Antibacterial ciprofloxacin HCl incorporated polyurethane composite nanofibers via electrospinning for biomedical applications // Ceramics International. - 2013. - Vol. 39. - P. 4937-4944.
  14. Azhie K. Antibacterial Studies on Titania Polyurethane Nanocomposite Coatings. Electronic Thesis and Dissertation Repository. 1939 [Elektronnyj resurs] - URL: https://ir.lib.uwo.ca/etd/1939 (data obrasenia: 08.12.2018).
  15. Li J.H., Hong R.Y., Li M.Y. [et al.] Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings // Progress in Organic Coatings. - 2009. - Vol. 64. - P. 504-509.
  16. Yao C., Li X., Neoh K.G. [et al.] Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties // Journal of Membrane Science. - 2008. - Vol. 320. - P. 259-267.
  17. Cebotar’ I.V., Pogorelov A.G., Asin V.A., Gur’ev E.L., Lominadze G.G. Sovremennye tehnologii issledovania bakterial’nyh plenok // Sovremennye tehnologii v medicine. - 2013. - T. 5. - No 1. - S. 14-20.
  18. Gorskova M.A., Petrova M.B., Miller D.A. Modifikacia metoda opredelenia osmoticeskoj rezistentnosti eritrocitov // Tverskoj medicinskij zurnal. - 2017. - No. 1. - S. 12-17.
  19. Karpunina T.I., Godovalov A.P., Yakusheva D.E. Analysis of the Biocompatibility of Polymer Implant Materials //Biomedical Engineering. - 2020. - Vol. 53. - No. 6. - P. 429-432.
  20. Zaavka No2020124543/14(042453) prioritet ot 14.07.2020. Godovalov A.P., Akuseva D.E., Busyrev U.B., Morozov I.A., Karpunina T.I., Astaf’eva S.A. Sposob individual’noj ocenki biosovmestimosti s organizmom implantiruemyh polimernyh materialov. Resenie o vydace patenta na izobretenie ot 11.12.2020.
  21. Patent RU 2625753 C. Karpunina T.I., Busyrev U.B., Nesterova L.U. Cposob ocenki antimikrobnoj modifikacii poverhnosti silikonovogo kaucuka.
  22. Al’ Rifai S.A., Kul’nickij B.A., Rabcev S.V., Domasevskaa E.P. Morfologiceskie i opticeskie osobennosti nanotetrapodov ZnO // Kondensirovannye sredy i mezfaznye granicy. - 2013. - T. 15. - No 3. - S. 317-321

Published

2021-04-30

Issue

Section

Research: theory and experiment

How to Cite

Yakusheva, D. ., Karpunina, T. ., Godovalov, A. ., Astafeva, S. ., & Slobodinyuk, A. . (2021). Implantable polyurethaneurea medical devices: synthesis, surface modification,bioсompatibility. Perm Federal Research Centre Journal, 1, 19-36. https://doi.org/10.7242/2658-705X/2021.1.2