Laboratory study of non-stationary convective flows with geophysical applications

Authors

  • A.N. Sukhanovskii Institute of Continuous Media Mechanics UB RAS
  • A.Yu. Vasiliev Institute of Continuous Media Mechanics UB RAS
  • A.V. Evgrafova Institute of Continuous Media Mechanics UB RAS
  • A.M. Pavlinov Institute of Continuous Media Mechanics UB RAS
  • E.N. Popova Institute of Continuous Media Mechanics UB RAS
  • V.A. Shchapov Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/2658-705X/2020.4.4

Keywords:

convection, intensive vortices, laboratory modeling, PIV, geophysical flows

Abstract

A study of convective flows, their evolution and formation mechanism has been carried out. Convective flows significantly affect the processes of heat transfer; therefore, the main attention is paid to the studying the role of secondary, small-scale structures in the boundary layer for the intensification of heat transfer. The features of the heat transfer process from a localized heat source in a cylindrical layer for various values of the Prandtl number, as well as the aspect ratios, are experimentally investigated. A laboratory study of the effect of convective rolls on the enhancement of the heat flux from the sea surface and the initiation of of rapid intensification process of tropical cyclones was carried out. An original approach has been implemented that combines measuring systems and a supercomputer. An approach for laboratory modeling of air flows and heat transfer processes on the scale of a metropolis has been proposed and tested.

Supporting Agencies
Работа выполнена в рамках гранта РФФИ № 17-45-590846 - урал.

Author Biographies

  • A.N. Sukhanovskii, Institute of Continuous Media Mechanics UB RAS
    кандидат физико-математических наук, старший научный сотрудник, Институт механики сплошных сред УрО РАН - филиал Пермского федерального исследовательского центра УрО РАН (ИМСС УрО РАН)
  • A.Yu. Vasiliev, Institute of Continuous Media Mechanics UB RAS

    кандидат физико-математических наук, научный сотрудник,"ИМСС УрО РАН"

  • A.V. Evgrafova, Institute of Continuous Media Mechanics UB RAS

    кандидат физико-математических наук, младший научный сотрудник, "ИМСС УрО РАН"

  • A.M. Pavlinov, Institute of Continuous Media Mechanics UB RAS

    кандидат физико-математических наук, младший научный сотрудник, "ИМСС УрО РАН"

  • E.N. Popova, Institute of Continuous Media Mechanics UB RAS

    кандидат физико-математических наук, научный сотрудник, "ИМСС УрО РАН"

  • V.A. Shchapov, Institute of Continuous Media Mechanics UB RAS

    кандидат технических наук, младший научный сотрудник, "ИМСС УрО РАН"

References

  1. Gersuni G.Z., Zuhovickij E.M., Nepomnasij A.A. Ustojcivost’ konvektivnyh tecenij // - M.: Nauka, 1989. 320 s.
  2. Zimin V.D., Frik P.G. Turbulentnaa konvekcia // M.: Nauka, 1988. - 178 s.
  3. Siggia E.D. High Rayleigh number convection // Annu. Rev. Fluid Mech., 1994. - Vol. 26. - P. 137-168.
  4. Ahlers G., Grossmann S., Lohse D. Heat transfer and large-scale dynamics in turbulent Rayleigh-Benard convection // Rev. Mod. Phys. - 2009. - Vol. 81. - P. 503-537.
  5. Chilla F., Schumacher J. New perspectives in turbulent Rayleigh-Benard convection // Eur. Phys. J.E. - 2012. - Vol. 35, 58.
  6. Oztop H.F., Estelle P., Yan W.-M., Al-Salem K., Orfi J., Mahian O. A brief review of natural convection in enclosures under localized heating with and without nanofluids // Int. Comm. Heat Mass Tran., - 2015. - Vol. 60. - P. 37-44.
  7. Sukhanovskii A., Evgrafova A., Popova E. Horizontal rolls over localized heat source in a cylindrical layer// Phys. Nonlinear Phenom. - 2016. - Vol. 316. - P. 23-33.
  8. Bakhuis D., Ostilla-Monico R., van der Poel E.P., Verzicco R., Lohse D. Mixed insulating and conducting thermal boundary conditions in Rayleigh-Benard convection // J. Fluid Mech. - 2018. - Vol. 835. - P. 491-511.
  9. Emanuel K. 100 years of progress in tropical cyclone research // Meteorol. Monogr. 59:15-1. (2018), https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.
  10. Vigh J.L. Tropical cyclone intensity change: internal influences-rapporteur report, topic 3.1 // Conference paper IWTC-9. - 2018. - P. 1-72.
  11. Kreizer, M., Ratner, D., Liberzon, A. Real-time image processing for particle tracking Velocimetry // Exp. Fluids 48(1). - P. 105-110 (2010).
  12. Willert C.E., Munson M.J., Gharib M. Real-time particle image velocimetry for closed-loop flow control applications // In: 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2010).
  13. Yu H., Leeser M., Tadmor G., Siegel S. Real-time particle image velocimetry for feedback loops using FPGA implementation // J. Aerosp. Comput. Inf., Commun. - 2006. - Vol. 3(2). - P. 52-62.
  14. Gautier N., Aider J.L. Real-time planar flow velocity measurements using an optical flow algorithm implemented on GPU // J. Vis. - 2015. - Vol. 18(2). - P. 277-286.
  15. Arnfield, A.J. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island // Int. J. Climatol., - 2003. - Vol. 23: 1-26. doi:10.1002/joc.859.
  16. Sessa V., Xie Z.T., Herring S. Thermal stratification effects on turbulence and dispersion in internal and external boundary layers // Boundary-Layer Meteorology. - 2019.
  17. Grylls T. [et al.] Steady-State Large-Eddy Simulations of Convective and Stable Urban Boundary Layers // Boundary Layer Meteorology. - 2020. - T. 175. - No. 3. - S. 309-341.
  18. Evgrafova A., Sukhanovskii A. Specifics of heat flux from localized heater in a cylindrical layer // International Journal of Heat and Mass Transfer. - 2019. - T. 135. - S. 761-768.
  19. Sukhanovskii A., Popova E. The Importance of Horizontal Rolls in the Rapid Intensification of Tropical Cyclones // Boundary-Layer Meteorology. - 2020. - S. 1-18. https://doi.org/10.1007/s10546-020-00503-2.
  20. Sapov V.A., Evgrafova A.V., Masic G.F. [i dr.] Primenenie superkomp’uternoj obrabotki dannyh ot izmeritel’nyh sistem dla provedenia eksperimentov s obratnoj svaz’u // Programmnye sistemy: teoria i prilozenia, - 2018, - Vol. 9:1(36), S. 3-19.
  21. Stepanov R., Sozykin A. Distributed PIV Technology: Network Storage Usage // CEUR Workshop Proceedings. - CEUR-WS, - 2017. - T. 1990. - S. 121-129.
  22. Sukhanovskii A.,Shchapov V., Pavlinov A., Popova E. Laboratory model of tropical cyclone with controlled forcing // Journal of Physics: Conference Series, - 2018/ - Vol. 1128. - 012133, doi: https://doi.org/10.1088/1742-6596/1128/1/012133.
  23. Sukhanovskii A. [et al.] Different aspects of laboratory analog of tropical cyclone // IOP Conference Series: Earth and Environmental Science. - IOP Publishing, 2019. - T. 231. - No. 1. - S. 012052.

Published

2021-01-12

Issue

Section

Research: theory and experiment

How to Cite

Sukhanovskii, A. ., Vasiliev, A. ., Evgrafova, A. ., Pavlinov, A. ., Popova, E. ., & Shchapov, V. . (2021). Laboratory study of non-stationary convective flows with geophysical applications. Perm Federal Research Centre Journal, 4, 47-54. https://doi.org/10.7242/2658-705X/2020.4.4