Construction of an electric analogue for determining the dissipative characteristics of electric viscoelastic bodies with external electric circuits

Authors

  • N.A. Iurlova Institute of Continuous Media Mechanics UB RAS
  • N.V. Sevodina Institute of Continuous Media Mechanics UB RAS
  • D.A. Oshmarin Institute of Continuous Media Mechanics UB RAS
  • M.A. Iurlov Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/2658-705X/2020.4.1

Keywords:

electroviscoelastic structure, piezoelectric element, electric circuit, electrical analogue of system, natural vibrations, complex eigenfrequencies

Abstract

The problem of damping vibrations of structural elements in various branches of technology does not lose its relevance over time but rather becomes a key issue for development of modern devices in airspace, aircraft, automotive industry. The use of piezoelectric elements and external electric circuits opens up novel possibilities for controlling the dynamic behavior of structures. Modeling the dynamic behavior of such electromechanical systems requires solving a related problem of electroviscoelasticity. Optimization of the dissipative properties of electromechanical systems under consideration is carried out through the selection of circuit parameters (tuning) that provide the best vibrations damping at a specified frequency. In this case, the most efficient tool is the problem of natural vibrations of piecewise homogeneous electroviscoelastic body with external electric circuits. However, the numerical procedure for finding the optimal parameters of electric circuits is related to multiple solution of the problem for each combination of the values of the circuit elements using complex large-sized matrices, including solving the algebraic problem of complex eigenvalues for these matrices. At the same time, the generality of mathematical equations, which describe oscillations in mechanical systems and oscillations of current and voltage in electric circuits, makes it possible to apply the method of dynamical analogies and consider equivalent electric system instead of coupled electromechanical one, replacing the equations of motion of electromechanical system with the corresponding analogues of equations for an equivalent electrical system. This allows to considerably decrease computational time and reduce the requirements for hardware resources. The developed discrete analogue is completely equivalent to the original electromechanical system with external electric circuit in terms of the spectrum of natural vibration frequencies. The results obtained with the aid of the electric analogue were verified by solving problems on natural vibrations of electroviscoelastic bodies, including those with external electric circuits, according to the mathematical statement of continuous media mechanics.

Supporting Agencies
Работа выполнена при финансовой поддержке РФФИ и Министерства образования и науки Пермского края (проект № 17-41-590152-р-урал_а).

Author Biographies

  • N.A. Iurlova, Institute of Continuous Media Mechanics UB RAS
    кандидат физико-математических наук, доцент, старший научный сотрудник, Институт механики сплошных сред УрО РАН - филиал Пермского федерального исследовательского центра УрО РАН (ИМСС УрО РАН)
  • N.V. Sevodina, Institute of Continuous Media Mechanics UB RAS

    кандидат технических наук, научный сотрудник, "ИМСС УрО РАН"

  • D.A. Oshmarin, Institute of Continuous Media Mechanics UB RAS

    младший научный сотрудник, "ИМСС УрО РАН"

  • M.A. Iurlov, Institute of Continuous Media Mechanics UB RAS

    инженер-исследователь, "ИМСС УрО РАН"

References

  1. Kligman E.P., Matveenko V.P. Natural Vibration Problem of Viscoelastic Solids as Applied to Optimization of Dissipative Properties of Constructions // International Journal of Vibration and Control. - 1997. - Vol. 3. - No 1. - R. 87-102.
  2. Matveenko V.P., Kligman E.P., Urlov M.A., Urlova N.A. Modelirovanie i optimizacia dinamiceskih harakteristik smart-struktur s p’ezomaterialami // Fiziceskaa mezomehanika. - 2012. - T. 15. - No 1. - S. 75-85.
  3. Matveenko V.P., Osmarin D.A., Sevodina N.A., Urlova N.A. Zadaca o sobstvennyh kolebaniah elektrovazkouprugih tel s vnesnimi elektriceskimi cepami i konecno-elementnye sootnosenia dla ee cislennoj realizacii // Vycislitel’naa mehanika splosnyh sred.- 2016. - T. 9. - No 4. - S. 476-485.
  4. Iurlova N.A., Sevodina N.V., Oshmarin D.A., Iurlov M.A. Algorithm for solving problems related to the natural vibrations of electro-viscoelastic structures with shunt circuits using ANSYS data // International Journal of Smart and Nano Materials. - 2019. - Vol. 10. - No 2. - R. 156-176.
  5. Hogsberg J., Krenk S. Calibration of piezoelectric RL shunts with explicit residual mode correction // Journal of Sound and Vibration. - 2017. - Vol. 386. - P. 65-81.
  6. Krenk S., Hogsberg J. Tuned resonant mass or inerter-based absorbers: unified calibration with quasidynamic flexibility and inertia correction. Proceedings of the Royal Society A - Mathematical, Physical and Engineering Sciences. - 2015. - Vol. 472. - art. No. 20150718.
  7. Firestone F.A. New analogy between mechanical and electrical systems // The Journal of the Acoustical Society of America. - 1933. - No 4. - R. 249-267.
  8. Mason W.P. Electrical and Mechanical Analogies // The Journal of the Acoustical Society of America. - 1942. - Vol. 14. - No 1. - R. 128-129.
  9. Dyke V. The electric network equivalent of a piezoelectric resonator // Physical Review. - 1925. Vol. 25. No. 6. - R. 895 Abs. - No 52.
  10. Firestone F.A. The Mobility Method of Computing the Vibration of Linear Mechanical and Acoustical Systems: Mechanical Electrical Analogies // Journal. Applied Physics. - 1938. - Vol. 9. - No 6. - P. 373-387.
  11. Miles J. Applications and Limitations of Mechanical-Electrical Analogies. New and Old // The Journal of the Acoustical Society of America. - 1943. - Vol. 14. - No 3. - P. 183-192.
  12. Matveenko V.P., Iurlov M.A., Oshmarin D.A., Sevodina N.V., Iurlova N.A. Modelling of vibrational processes in systems with piezoelements and external electric circuits on the basis of their electrical analogue // International Journal of Intelligent Material Systems and Structures - 2018. - Vol. 29. - No 16. - P. 3254 3265.
  13. Urlov M.A., Osmarin D.A., Sevodina N.V., Urlova N.A. Resenie zadaci o sobstvennyh kolebaniah elektrouprugih tel s vnesnimi elektriceskimi cepami na osnove ih elektriceskogo analoga // Vestnik Permskogo nacional’nogo issledovatel’skogo politehniceskogo universiteta. Mehanika. - 2018. - No 4. - S. 268-279.
  14. Olson H.F. Dynamical Analogies. - New York, UAS: D. Van Nostrand Company, Inc., 1943. - 208p.
  15. Alessandroni S., Andreaus U., dell’Isola F., Porfiri M. Piezo-ElectroMechanical (PEM) Kirchhoff-Love plates // European Journal of Mechanics. A/Solids. - 2004. - Vol. 23. - No 4. - P. 689-702.
  16. Giorgio I., Culla A., Del Vescovo D. Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network // Archive of Applied Mechanics. - 2009. - Vol. 79. - P. 859-879.
  17. Giorgio I., Galantucci L., Della Corte A., Del Vescovo D. Piezo-electromechanical Smart Materials with distributed arrays of Piezoelectric Transducers: current and upcoming applications // International Journal of Applied Electromagnetics and Mechanics. - 2015. - Vol. 47. - No 4. - P. 1051-1084.
  18. Viana F.A. C., Valder S.Jr. Multimodal Vibration Damping through Piezoelectric Patches and Optimal Resonant Shunt Circuits// J. of the Braz. Soc. of Mech. Sci. & Eng. - 2006. - Vol. XXVIII. - No 3. - P. 293-310.
  19. Agneni A., Mastroddi F., Polli G.M. Shunted piezoelectric patches in elastic and aeroelastic vibrations // Computers and Structures. - 2003. - Vol. 81. - P. 91-105.
  20. Fleming A.J., Behrens S., Moheimani S.O.R. Reducing the inductance requirements of piezoelectric shunt damping systems // Smart Materials and Structures. - 2003. - No 12. - P. 57-64.
  21. Thomas O., Ducarne J., Deu J.-F. Performance of piezoelectric shunts for vibration reduction // Smart Materials and Structures. - 2012. - Vol. 21. - No 1. - art. No 015008.
  22. Caruso G. A critical analysis of electric shunt circuits employed in piezoelectric passive vibration damping // Smart Materials and Structures. - 2001. - No 10. - P. 1059-1068.
  23. Guan M., Liao W.-H. Studies on the Circuit Models of Piezoelectric Ceramics // International Conference on Information Acquisition, 2004. Proceedings. - 2004. - P. 26-31.
  24. Sherrit S., Wiederick H., Mukherjee B., Sayer M. An accurate equivalent circuit for the unloaded piezoelectric vibrator in the thickness mode // Journal of Physics D: Applied Physics. - 1997. - Vol. 30. - No 16. - P. 2354-2363.
  25. Park C.H. On the circuit model of piezoceramics // Journal of Intelligent Material Systems and Structures. - 2001.- Vol. 12. - P. 515-522.
  26. Kim S.H., Ju S., Ji C.H., Lee S.J. Equivalent circuit model of an impact-based piezoelectric energy harvester // Journal of Physics: Conference Series. - 2014. - Vol. 557. - art. No 012094.
  27. Yang Y., Tang L. Equivalent Circuit Modeling of Piezoelectric Energy Harvesters // Journal of Intelligent Material Systems and Structures. - 2009. - Vol. 20. - P. 2223-2235.
  28. Hohlov A.B. Teoreticeskie osnovy radioelektroniki. - Saratov: Izdatel’stvo Saratovskogo un-ta, - 2005. - 296 s.
  29. Urlov M.A., Osmarin D.A., Sevodina N.V., Urlova N.A. Resenie zadaci o sobstvennyh kolebaniah elektrouprugih tel s vnesnimi elektriceskimi cepami na osnove ih elektriceskogo analoga // Vestnik Permskogo nacional’nogo issledovatel’skogo politehniceskogo universiteta. Mehanika. - 2018. - No 4. - S. 268-279.

Published

2021-01-12

Issue

Section

Research: theory and experiment

How to Cite

Iurlova, N. ., Sevodina, N. ., Oshmarin, D. ., & Iurlov, M. . (2021). Construction of an electric analogue for determining the dissipative characteristics of electric viscoelastic bodies with external electric circuits. Perm Federal Research Centre Journal, 4, 6-22. https://doi.org/10.7242/2658-705X/2020.4.1