Mechanisms of bacterial conversion and degradation of pharma pollutants from nonsteroidal anti-inflammatory drugs

Authors

  • I.B. Ivshina Perm Federal Research Center UB RAS; Perm State National Research University
  • E.A. Tyumina Perm Federal Research Center UB RAS; Perm State National Research University
  • G.A. Bazhutin Perm Federal Research Center UB RAS; Perm State National Research University
  • A.A. Selyaninov Perm National Research Polytechnic University
  • E.V. Vikhareva Perm State Pharmaceutical Academy

DOI:

https://doi.org/10.7242/2658-705X/2020.3.1

Keywords:

biodegradation, actinobacteria, Rhodococcus, pharma pollutants, NSAIDs, ibuprofen, diclofenac

Abstract

Recently, there has been a steady increase in fundamental interest in studying the degree of bioavailability and toxic effects of pharmaceutical pollutants on natural microorganisms, which play the role of a primary response system to the xenobiotic load in the environment. Employing the bioresources of the Regional Specialised Collection of Alkanotrophic Microorganisms (IEGM, Large-Scale Research Facilities number 73559, WDCM # 768, http://www.iegmcol.ru), the ability of actinobacteria of the genus Rhodococcus to decompose complex aromatic compounds that constitute the non-steroidal anti-inflammatory drugs (NSAIDs) widely used for medical purposes was first established. Active biodegraders of diclofenac and ibuprofen, which dominate among NSAIDs detected in the natural environment and pose the greatest potential risk to hydrobiota and humans, were selected. The kinetics and main characteristics of the biodegradation process of the tested pharmaceutical pollutants were investigated depending on the physiological state and culture conditions of their biodegraders. Cytochrome P450-dependent monooxygenases were shown to participate in the initial oxidation of the pharma pollutants. The products of bacterial decomposition of the ecotoxicants were identified, the pathways of their biodegradation were characterized, and the mathematical models of the process of complete bacterial degradation of pharmaceutical pollutants in high concentrations were described. For the first time, evidence for the C-N bond breaking and aromatic ring opening in the diclofenac structure accompanied by the formation of metabolites harmless to living organisms was obtained. Potential bioactivity of individual metabolites of diclofenac and ibuprofen was evaluated. The most typical reactions of rhodococci exposed to NSAIDs were as follows: changes in the zeta potential, morphometric parameters and degree of hydrophobicity of bacterial cells, an increased content of total cellular lipids, and the formation of bacterial associates. The obtained results are considered to be mechanisms of rhodococci adaptation and their increased resistance to toxic effects of the pharmaceutical pollutants tested. The obtained fundamental data elucidate the environmental role of rhodococci in detoxification of pharma pollutants and underpin the implementation of innovative technical solutions for advanced pharmaceutical sewage treatment and the pharmaceutical waste disposal.

Supporting Agencies
Исследования поддержаны грантом Российского фонда фундаментальных исследований и Министерства образования и науки Пермского края (№ 17-44-590567 «Механизмы бактериальной конверсии и деградации фармполлютантов группы нестероидных противовоспалительных средств»).

Author Biographies

  • I.B. Ivshina, Perm Federal Research Center UB RAS; Perm State National Research University
    доктор биологических наук, профессор, академик РАН, заведующий лабораторией алканотрофных микроорганизмов, Институт экологии и генетики микроорганизмов УрО РАН - филиал Пермского федерального исследовательского центра УрО РАН (ИЭГМ УрО РАН; профессор кафедры микробиологии и иммунологии, Пермский государственный национальный исследовательский университет (ПГНИУ)
  • E.A. Tyumina, Perm Federal Research Center UB RAS; Perm State National Research University
    младший научный сотрудник, ПФИЦ УрО РАН; аспирант, ПГНИУ
  • G.A. Bazhutin, Perm Federal Research Center UB RAS; Perm State National Research University
    младший научный сотрудник, ПФИЦ УрО РАН; аспирант, ПГНИУ
  • A.A. Selyaninov, Perm National Research Polytechnic University
    доктор технических наук, профессор кафедры вычислительной математики, механики и биомеханики, Пермский политехнический национальный исследовательский университет (ПНИПУ)
  • E.V. Vikhareva, Perm State Pharmaceutical Academy
    доктор фармацевтических наук, профессор, заведующий кафедрой аналитической химии, Пермская государственная фармацевтическая академия (ПГФА)

References

  1. de Carvalho C.C.C.R. Adaptation of Rhodococcus to organic solvents. In: Biology of Rhodococcus / Ed. H. M. Alvarez. - Cham: Springer, 2019. - P. 103-135.
  2. Ivshina I.B., Kuyukina M.S., Krivoruchko A.V. Hydrocarbon-oxidizing bacteria and their potential in ecobiotechnology and bioremediation. In: Microbial Resources: From Functional Existence in Nature to Industrial Applications / Ed. I. Kurtboke. - London: Elsevier, 2017. - P. 121-148.
  3. Maia A.S., Tiritan M.E., Castro P.M.L. Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1 // Ecotoxicology and Environmental Safety. - 2018. - Vol. 155. - P. 144-151.
  4. Thelusmond J.R., Strathmann T.J., Cupples A.M. Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils // Science of the Total Environment. - 2019. - Vol. 657. - P. 1138-1149.
  5. Ivshina I.B., Mukhutdinova A.N., Tyumina H.A., Vikhareva H.V., Suzina N.E., El’-Registan G.I., Mulyukin A.L. Drotaverine hydrochloride degradation using cyst-like dormant cells of Rhodococcus ruber // Current Microbiology. - 2015. - Vol. 70(3). - P. 307-314.
  6. aus der Beek T., Weber F.A., Bergmann A., Hickmann S., Ebert I., Hein A., Kuster A. Pharmaceuticals in the environment - Global occurrences and perspectives // Environmental Toxicology and Chemistry. - 2016. - Vol. 35(4). - P. 823-835.
  7. Acuna V., Ginebreda A., Mor J.R., Petrovic M., Sabater S., Sumpter J., Barcelo D. Balancing the health benefits and environmental risks of pharmaceuticals: Diclofenac as an example // Environment International. - 2015. - Vol. 85. - P. 327-333.
  8. Ding T., Yang M., Zhang J., Yang B., Lin K., Li J., Gan J. Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. // Journal of Hazardous Materials. - 2017. - Vol. 330. - P. 127-134.
  9. Alygizakis N.A., Gago-Ferrero P., Borova V.L., Pavlidou A., Hatzianestis I., Thomaidis N.S. Occurrence and spatial distribution of 158 pharmaceuticals, drugs of abuse and related metabolites in offshore seawater // Science of the Total Environment. - 2016. - Vol. 541. - P. 1097-1105.
  10. Rivera-Jaimes J.A., Postigo C., Melgoza-Aleman R.M., Acena J., Barcelo D., Lopez de Alda M. Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment // Science of the Total Environment. - 2018. - Vol. 613-614. - P. 1263-1274.
  11. Simazaki D., Kubota R., Suzuki T., Akiba M., Nishimura T., Kunikane S. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health // Water Research. - 2015. - Vol. 76. - P. 187-200.
  12. Oaks J.L., Gilbert M., Virani M.Z., Watson R.T., Meteyer C.U., Rideout B.A., Shivaprasad H.L., Ahmed S., Chaudhry M.J.I., Arshad M., Mahmood S., Ali A., Khan A.A. Diclofenac residues as the cause of vulture population decline in Pakistan. // Nature. - 2004. - Vol. 427(6975). - P. 630-633.
  13. Yokota H., Taguchi Y., Tanaka Y., Uchiyama M., Kondo M., Tsuruda Y., Suzuki T., Eguchi S. Chronic exposure to diclofenac induces delayed mandibular defects in medaka (Oryzias latipes) in a sex-dependent manner // Chemosphere. - 2018. - Vol. 210. - P. 139-146.
  14. Schroder P., Helmreich B., Skrbic B., Carballa M., Papa M., Pastore C., Emre Z., Oehmen A., Langenhoff A., Molinos M., Dvarioniene J., Huber C., Tsagarakis K.P., Martinez-Lopez E., Pagano S.M., Vogelsang C., Mascolo G. Status of hormones and painkillers in wastewater effluents across several European states - considerations for the EU watch list concerning estradiols and diclofenac // Environmental Science and Pollution Research. - 2016. - Vol. 23(13). - P. 12835-12866.
  15. Domaradzka D., Guzik U., Wojcieszynska D. Biodegradation and biotransformation of polycyclic nonsteroidal anti-inflammatory drugs // Reviews in Environmental Science and Biotechnology. - 2015. - Vol. 14(2). - P. 229-239.
  16. Marchlewicz A., Guzik U., Wojcieszynska D. Over-the-counter monocyclic non-steroidal anti-inflammatory drugs in environment - Sources, risks, biodegradation // Water, Air, and Soil Pollution. - 2015. - Vol. 226(10). - P. 1-13.
  17. Catalogue of Strains of Regional Specialized Collection of Alkanotrophic Microorganisms [Elektronnyj resurs]. - URL: http://www.iegmcol.ru/strains/index.html (data obrasenia: 06.06.2019).
  18. Metodiceskie rekomendacii: Obosnovanie klassa opasnosti othodov proizvodstva i potreblenia po fitotoksicnosti. - M.: Federal’nyj centr gigieny i epidemiologii Rospotrebnadzora, 2007. - 15 s.
  19. Zur J., Pinski A., Marchlewicz A., Hupert-Kocurek K., Wojcieszynska D., Guzik U. Organic micropollutants paracetamol and ibuprofen - toxicity, biodegradation, and genetic background of their utilization by bacteria // Environmental Science and Pollution Research. - 2018. - Vol. 25(22). - P. 21498-21524.
  20. Klenk J.M., Nebel B.A., Porter J.L., Kulig J.K., Hussain S.A., Richter S.M., Tavanti M., Turner N.J., Hayes M.A., Hauer B., Flitsch S.L. The self-sufficient P450 RhF expressed in a whole cell system selectively catalyses the 5-hydroxylation of diclofenac // Biotechnology Journal. - 2017. - Vol. 12(3). - P. 1-23.
  21. Selaninov A.A., Baranova A.A., Vihareva E.V. Vrema zaversenia kineticeski modeliruemyh biomehaniceskih processov // Rossijskij zurnal biomehaniki. - 2016. - T. 20, No 4. - S. 368-377.
  22. Ivshina I.B., Tyumina E.A., Kuzmina M.V., Vikhareva E.V. Features of diclofenac biodegradation by Rhodococcus ruber IEGM 346 // Scientific Reports. - 2019. - Vol. 9(1). - P. 1-13.
  23. Neumann G., Veeranagouda Y., Karegoudar T.B., Sahin O.", Mciusezahl I., Kabelitz N., Kappelmeyer U., Heipieper H.J. Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size // Extremophiles. - 2005. - Vol. 9(2). - P. 163-168.
  24. Halder S., Yadav K.K., Sarkar R., Mukherjee S., Saha P., Haldar S., Karmakar S., Sen T. Alteration of Zeta potential and membrane permeability in bacteria: a study with cationic agents // Springer Plus. - 2015. - Vol. 4. - P. 1-14.
  25. Gogoleva O.A., Nemtseva N.V., Bukharin O.V. Catalase activity of hydrocarbon-oxidizing bacteria // Applied Biochemistry and Microbiology. - 2012. - Vol. 48(6). - P. 552-556.
  26. United Nations. Globally Harmonized System of Classification and Labelling of Chemicals (GHS) / New York and Geneva: United Nations, 2011. - 562 p.

Published

2020-09-11

Issue

Section

Research: theory and experiment

How to Cite

Ivshina, I. ., Tyumina, E. ., Bazhutin, G. ., Selyaninov, A. ., & Vikhareva, E. . (2020). Mechanisms of bacterial conversion and degradation of pharma pollutants from nonsteroidal anti-inflammatory drugs. Perm Federal Research Centre Journal, 3, 6-22. https://doi.org/10.7242/2658-705X/2020.3.1