The role of polyamines in the regulation of bacterial persistence
DOI:
https://doi.org/10.7242/2658-705X/2020.2.4Keywords:
persistence, antibiotics, tolerance, polyamines, gene expressionAbstract
Using the complex of methods including reporter gene fusions, quantitative reverse transcriptase PCR and gene knockout mutations the participation of stress response genes ( rpoS, rmf, relA и spoТ ) in persister cell, formation was revealed in E. coli batch cultures during transition to stationary phase. The expression levels of these genes are positively modulated by polyamines (putrescine, spermidine, cadaverine) in a concentration-depended manner. So, effects of polyamines accumulated by stationary phase cells are targeted to the potentiation of the functions of cell global regulators implicated in stress response and persister cell formation. The data obtained in this work might be used for developing novel approaches targeted to the potentiation of traditional clinical antibiotics or elaboration of new antibacterials.
References
- Tkacenko A. Molekularnye mehanizmy stressornyh otvetov u mikroorganizmov - Ekaterinburg: UrO RAN, 2012. - 268 s.
- Tkacenko A.G. Stressornye otvety bakterial’nyh kletok kak mehanizm razvitia tolerantnosti k antibiotikam (obzor) // Prikladnaa biohimia i mikrobiologia. - 2018. - 54 (2). - S. 110-133.
- Tkacenko A.G., Pozidaeva O.N, Sumkov M.S. Rol’ poliaminov v formirovanii mnozestvennoj antibiotikoustojcivosti Escherichia coli v usloviah stressornyh vozdejstvij // Biohimia. - 2006. - 71 (9). - S. 1287-1296.
- Tkacenko A.G., Sumkov M.S. Rol’ putrescina v regulacii urovna sS-sub"edinicy RNKpolimerazy v kletkah Escherichia coli pri perehode k stacionarnoj faze // Biohimia. - 2004. - 69(8). - S. 1079-1087.
- Tkacenko A.G., Sumkov M.S., Ahova A.V. Putrescin kak modulator soderzania sS -sub"edinicy RNKpolimerazy v kletkah Escherichia coli pri kislotnom stresse // Biohimia. - 2006. - 71(2). - S. 237-246.
- Tkacenko A.G., Sumkov M.S., Ahova A.V. Adaptivnye funkcii poliaminov pri subletal’nyh vozdejstviah antibiotikov // Mikrobiologia. - 2009. - 78(1). S. 32-41.
- Agostinelli E., Marques M.P., Calheiros R., Gil F.P., Tempera G., Viceconte N., Battaglia V., Grancara S., Toninello A. Polyamines: fundamental characters in chemistry and biology // Amino Acids. - 2010. - Vol. 38. - No 2. - P. 393-403.
- Amarantos I., Zarkadis I.K., Kalpaxis D.L. The identification of spermine binding sites in 16S rRNA allows interpretation of the spermine effect on ribosomal 30S subunit functions // Nucleic Acids Res. - 2002. - Vol. 30. - No 13. - P. 2832-2843.
- Amato S.M., Fazen C.H., Henry T.C., Mok W.W., Orman M.A., Sandvik E.L., Volzing K.G., Brynildsen M.P. The role of metabolism in bacterial persistence // Front. Microbiol. - 2014. - Vol. 5. - P. 1-9.
- Balaban N.Q., Merrin J., Chait R., Kowalik L., Leibler S. Bacterial Persistence as a Phenotypic Switch // Science. - 2004. - Vol. 305. - No 5690. - P. 1622-1625.
- Balaban N.Q., Helaine S., Lewis K., et al. Definitions and guidelines for research on antibiotic persistence // Nature Reviews Microbiology. - 2019. - Vol. 17. - P. 441-448.
- Datsenko K.A., Wanner B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products // Proc. Natl. Acad. Sci. USA. - 2000. - Vol. 97. - No 12. - P. 6640-6645.
- Gaca A.O., Colomer-Winter C., Lemos J.A. Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis // Journal of Bacteriology. - 2015. - Vol. 197. - No 7. - P. 1146-1156.
- Gollan B., Grabe G., Michaux C., Helaine S. Bacterial persisters and infection: past, present, and progressing // Annu. Rev. Microbiol. - 2019. - Vol. 73. - P. 359-385.
- Harms A., Brodersen D.E., Mitarai N., Gerdes K. Toxins, targets, and triggers: an overview of toxinantitoxin biology // Mol. Cell. - 2018. - Vol. 70. - No 5. - P. 768-784.
- Hauryliuk V., Atkinson G.C., Murakami K.S., Tenson T., Gerdes K. Recent functional insights into the role of (p)ppGpp in bacterial physiology // Nat. Rev. Micro. - 2015. - Vol. 13. - No 5. - P. 298-309.
- Hengge-Aronis R. Recent insights into the general stress response regulatory network in Escherichia coli // J. Mol. Microbiol. Biotechnol. - 2002. - Vol. 4. - No 3. - P. 341-346.
- Hirsch M., Elliott T. Stationary-phase regulation of RpoS translation in Escherichia coli // J. Bacteriol. - 2005. - Vol. 187. - No 21. - P. 7204-7213.
- Igarashi K., Kashiwagi K. Polyamine Modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines // J. Biochem. - 2006. - Vol. 139. - No 1. P. 11-16.
- Igarashi K., Kashiwagi K. Characterization of genes for polyamine modulon // Methods Mol. Biol. - 2011. - Vol. 720. - P. 51-65.
- Izutsu K., Wada A., Wada C. Expression of ribosome modulation factor (RMF) in Escherichia coli requires ppGpp // Genes Cells. - 2001. - Vol. 6. - No 8. - P. 665-676.
- Keren I., Kaldalu N., Spoering A., Wang Y., Lewis K. Persister cells and tolerance to antimicrobials // FEMS Microbiol. Lett. - 2004. - Vol. 230. - No 1. - P. 13-18.
- Kim J.-S., Wood T.K. Persistent Persister Misperceptions // Frontiers in Microbiology. - 2016. - Vol. 7. - 2134.
- Lewis K. Persister cells // Annu. Rev. Microbiol. - 2010. - Vol. 64. - No 15. - P. 357-372.
- Maisonneuve E., Gerdes K. Molecular Mechanisms Underlying Bacterial Persisters // Cell. - 2014. - Vol. 157. - No 3. - P. 539-548.
- Miller J.H. Experiments in molecular genetics - Cold Spring Harbor Laboratory: New York, 1972. - Vol. 60.
- Radzikowski J.L., Vedelaar S., Siegel D., Ortega A.D., Schmidt A., Heinemann M. Bacterial persistence is an active sigmaS stress response to metabolic flux limitation // Mol. Syst. Biol. - 2016. - Vol. 12. - No 9. - 882.
- Rhee H.J., Kim E.J., Lee J.K. Physiological polyamines: simple primordial stress molecules // Journal of Cellular and Molecular Medicine. - 2007. - Vol. 11. - No 4. - P. 685-703.
- Ruijter J.M., Ramakers C., Hoogaars W.M., Karlen Y., Bakker O., van den Hoff M.J., Moorman A.F. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data // Nucleic Acids Res. - 2009. - Vol. 37. - No 6. - e45.
- Schellhorn H.E. Elucidating the function of the RpoS regulon // Future Microbiol. - 2014. - Vol. 9. - No 4. - P. 497-507.
- Simons, R.W., Houman F., Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions // Gene. - 1987. - Vol. 53. - No 1. - P. 85-96.
- Terui Y., Akiyama M., Sakamoto A., Tomitori H., Yamamoto K., Ishihama A., Igarashi K. Kashiwagi K. Increase in cell viability by polyamines through stimulation of the synthesis of ppGpp regulatory protein and omega protein of RNA polymerase in Escherichia coli // Int. J. Biochem. Cell. Biol. - 2012. - Vol. 44. - No 2. - P. 412-422.
- Tkachenko A.G., Nesterova L.Y., Pshenichnov M. The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli // Arch. Microbiol. - 2001. - Vol. 176. - No 1-2. - P. 155-157.
- Tkachenko A.G., Kashevarova N.M., Karavaeva E.A., Shumkov M.S. Putrescine controls the formation of Escherichia coli persister cells tolerant to aminoglycoside netilmicin // FEMS Microbiol. Lett. - 2014. - Vol. 361. - P. 25-33.
- Tkachenko A.G., Kashevarova N.M., Tyuleneva E.A., Shumkov M.S. Stationary-phase genes upregulated by polyamines are responsible for the formation of Escherichia coli persister cells tolerant to netilmicin // FEMS Microbiol. Lett. - 2017. - Vol. 364. - No 9. - fnx084.
- Wada A. Growth phase coupled modulation of Escherichia coli ribosomes // Genes Cells. - 1998. - Vol. 3. - No 4. - P. 203-208.
- Windels E.M., Michiels J.E., Fauvart M., Wenseleers T., Van den Bergh B., Michiels J. Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates // Isme. J. - 2019. - Vol. 13. - No 5. - P. 1239-1251.
- Yoshida H., Maki Y., Furuike S., Sakai A., Ueta M., Wada A. YqjD is an inner membrane protein associated with stationary-phase ribosomes in Escherichia coli // J. Bacteriol. - 2012. - Vol. 194. - No 16. - P. 4178-4183.