Studying the processes of microbial metabolism and nitro compounds and the development of effective biocatalysts for their biotransformation and biodegradation
DOI:
https://doi.org/10.7242/2658-705X/2020.2.3Keywords:
bacteria, biocatalysis, bio-purification, biotransformation, nitro compounds, nitrotoluene, nitrocellulose, TNTAbstract
As a result of selection from communities of natural and technologically modified environments, communities of aerobic heterotrophic bacteria were identified, that are capable of using labormetabolizable natural nitrates (colloxylin, nitrophenol, nitrobenzene, dinitrobenzene) as sources of carbon and/or nitrogen. Active cultures were obtained, identified as actinobacteria of the genera Rhodococcus (Rhodococcus erythropolis, Rhodococcus ruber, Rhodococcus rodnii), Arthrobacter, Gordona, bacilli of the species Bacillus pumilus and Bacillus thuringienses, saliva, pinching, and mucous larch to nitrocellulose and aromatic nitro compounds. A metagenomic analysis of microcenoses of technologically altered soils and Perm production plants has been carried out using the nitro compound of the Federal State Unitary Enterprise Perm Powder Plant, OJSC Solikamsk Plant Ural, OJSC Kamtex-Khimprom, as well as natural medium-sized rivers and karst lakes, natural resources of sod-meadow and podzolic soils. As a result of PCR analysis of active cultural proteobacteria, genes of nitroreductases were found that are characteristic of some representatives of the genus Pseudomonas. It was shown that the isolated Pseudomonas and Rhodococcus isolates possess amidase activity and have gene types of known amidases. The growth kinetics of active cultures using ordinary nitrates as a substrate was studied. A certain influence of cultivation conditions (temperature, pH, salt composition) on the growth rate, biomass growth and activity of biodegradation of nitro compounds has been determined. It was shown that highly active cultures of Pseudomonas fluorescens, P. putida, R. erythropolis under optimal conditions are capable of depolymerizing colloxylin at a high rate of up to 0,5 g / 1 g d.v. cells / day. It was established that the derivatives of biotransformation are microbial communities of colloxylins, biogenic organic amines and amides, which makes it possible to obtain a substrate for nitrogen-containing organic fertilizer during biodegradation.
References
- Gladcenko M.A., Gajdamaka S.N., Murygina V.P., Lifsic A.B., Cerenkov P.G. Issledovanie processa tverdofaznoj aerobnoj fermentacii nitrocellulozosoderzasego osadka stocnyh vod metodom laboratornogo modelirovania // Himiceskaa fizika. - 2015. - T. 34(6). - S. 30-37. 2.
- Lazarev N.V., Levin E.N. Lazarev N.V. Vrednye vesestva v promyslennosti. Spravocnik dla himikov, inzenerov i vracej. T. 2. Organiceskie vesestva. - 1976. - 724 s.
- Maksimov A.U., Kuznecova M.V., Oveckina G.V., Kozlov S.V., Maksimova U.G., Demakov V.A. Vlianie nitrilov i amidov na rost i nitrilgidrataznuu aktivnost’ stamma Rhodococcus sp. gt 1 // Prikladnaa biohimia i mikrobiologia, - 2003. - T. 39. - No 1. - S. 63-68.
- Maksimova U.G., Maksimov A.U., Demakov V.A. Biotehnologiceskie podhody k bioremediacii okruzausej sredy, zagraznennoj trinitrotoluolom // Biotehnologia. - 2018. - T. 34. - No 1. - S. 9-23.
- Percovic S.I., Guranda D.T., Podnernaev D.A., Anenko A.S., Svadas V.K. Alifaticeskaa amidaza iz Rhodococcus rhodochrous - predstavitel’ semejstva nitrilaz/cianidgidrataz // Biohimia. - 2005. - T. 70 (11). - S. 1556-1565.
- Petrova O.E. Transformacia nitroefira cellulozy sul’fatreduciruusej bakteriej Desulfovibrio desulfuricans 1388: dis...kand. biol. nauk: Kazan’, 2004. - 114 c.
- Caballero A., Lazaro J.J., Ramos J.L., Esteve-Nunez A. PnrA, a new nitroreductase-family enzyme in the TNT-degrading strain Pseudomonas putida JLR11 // Environ Microbiol. - 2005 - Vol. 7(8). - P. 1211-1219.
- Erkelens M., Adetutu E.M., Taha M. [et al.] Sustainable remediation - The application of bioremediated soil for use in the degradation of TNT chips // J. Environ. Manage. - 2012. - Vol. 110. - P. 69-76.
- Fournand D., Arnaud A. Aliphatic and enantioselective amidases: from hydrolysis to acyl transfer activity // J. Appl. Microbiol. - 2001. - Vol. 91(3). - P. 381-393.
- Gren I., Wojcieszynska D., Guzik U., Perkosz M., Hupert-Kocurek K. Enhanced biotransformation of mononitrophenols by Stenotrophomonas maltophilia KB2 in the presence of aromatic compounds of plant origin // World J. Microbiol. Biotechnol. - 2009. - Vol.26 (2). - P. 289-295.
- Kumagai Y, Wakayama T, Lib S, Shinohara A, Iwamatsu A, Sun G, Shimojo N. Zeta-crystallin catalyzes the reductive activation of 2,4,6-trinitrotoluene to generate reactive oxygen species: a proposed mechanism for the induction of cataracts // FEBS Lett. - 2000. - Vol. 478(3). - P. 295-298.
- Kulkarni M., Chaudhari A. Microbial remediation of nitro-aromatic compounds: An overview // J. Environmental Management - 2007. - Vol.85 (2). - P. 496-512.
- Lee B.-U., Park S.-C., Cho Y.-S. [et al.] Expression and characterization of the TNT nitroreductase of Pseudomonas sp. HK-6 in Escherichia coli // Curr. Microbiol. - 2008. - Vol.56. - P.386-390.
- Liang S.-H., Hsu D.-W., Lin C.-Y. [et al.] Enhancement of microbial 2,4,6-trinitrotoluene transformation with increased toxicity by exogenous nutrient amendment // Ecotoxicol. Environ. Saf. - 2017. - Vol.138. - P. 39-46.
- Littlechild J.A. Enzymes from extreme environments and their industrial applications // Biotechnol. - 2015. - P. 1-9.
- Marvin-Sikkema F.D., de Bont J.A.M. Degradation of nitroaromatic compounds by microorganisms // Applied Microbiology and Biotechnol. - 1994. - Vol. 42. - P. 499-507.
- Ningthoujam D. Isolation and identification of a Brevibacterium linens strain degrading p-nitrophenol // African J. of Biotech. - 2005. - Vol. 4. - P. 256-257.
- Nivinskas H., Ronald L. Koder. Two-electron reduction of nitroaromatic compounds by Enterobacter cloacae NAD(P)H nitroreductase: Description of quantitative structure-activity relationships - 2000. - Vol. 47. - P. 249 - 258.
- Ningthoujam D. Isolation and Identification of a Brevibacterium linens strain degrading p-nitrophenol // African Journal of Biotechnology - 2005. - Vol. 4 (3). - P. 256 - 257.
- Soojhawon I., Lokhande P.D., Kodam K.M., Gawai K.R. Biotransformation of nitroaromatics and their effects on mixed function oxidase system // Enzyme and Microbial Technology - 2005. - Vol. 37 (5). - P. 527-533.
- Suenaga H., Koyama Y., Miyakoshi M., Miyazaki R., Yano H., Sota M., Ohtsubo Y., Tsuda M., Miyazaki K. Novel organization of aromatic degradation pathway genes in a microbial community as revealed by metagenomic analysis // ISME J. - 2009. - Vol. 3(12): - P. 1335-1348.
- Suenaga H. Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities //Environ Microbiol. - 2012. - Vol. 14(1). - P.13-22.
- Suenaga H. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment // Front Microbiol. - 2015. - Vol. 22 (6): - P. 1018.
- Xinghui Q., Qiuzan Z., Mei L., Wenqin B., Baotong L. Biodegradation of p-nitrophenol by methyl parathion-degrading Ochrobactrum sp. B2 // International Biodeterioration and Biodegradation - 2007. - P. 297-301.
- Zhang M., Liu G.-h., Song K. [et al.] Biological treatment of 2,4,6-trinitrotoluene (TNT) red water by immobilized anaerobic-aerobic microbial filters // Chem. Eng. J. - 2015. - Vol. 259. - P. 876-884.