The influence of the topology of the heated surface on the efficiency of heat transfer between the wall and liquid coolant

Authors

  • R.A. Stepanov Institute of Continuous Media Mechanics UB RAS
  • A.N. Sukhanovskii Institute of Continuous Media Mechanics UB RAS
  • A.U. Vasiliev Institute of Continuous Media Mechanics UB RAS
  • E.N. Popova Institute of Continuous Media Mechanics UB RAS
  • V.V. Titov Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/2658-705X/2020.2.2

Keywords:

convection, turbulence, heat transfer, large-scale circulation, fractal surfaces

Abstract

The study is aimed to investigate new ways for enhancement of the heat transfer efficiency. Passive methods are considered to be widely used in heat transfer systems in the housing and communal services sector and industry. Experimental and numerical studies of the properties of the vortex structure of convective flows were carried out depending on the values of the control parameters and the shape of the heated surfaces. The problem was investigated in two-dimensional and threedimensional formulations. Based on numerical simulation data, it was shown that a change in the temperature distribution configuration leads to a significant change in the structure of the large-scale flow. It has been established that the use of fractal heating can significantly reduce the level of heat flow pulsations without loss in heat transfer efficiency.

Supporting Agencies
Работа выполнена в рамках гранта РФФИ № 16-41-590406-урал.

Author Biographies

  • R.A. Stepanov, Institute of Continuous Media Mechanics UB RAS
    доктор физико-математических наук, ведущий научный сотрудник, Институт механики сплошных сред УрО РАН - филиал Пермского федерального исследовательского центра УрО РАН (ИМСС УрО РАН)
  • A.N. Sukhanovskii, Institute of Continuous Media Mechanics UB RAS
    кандидат физико-математических наук, старший научный сотрудник, ИМСС УрО РАН
  • A.U. Vasiliev, Institute of Continuous Media Mechanics UB RAS
    кандидат физико-математических наук, научный сотрудник, ИМСС УрО РАН
  • E.N. Popova, Institute of Continuous Media Mechanics UB RAS
    кандидат физико-математических наук, инженер-исследователь, ИМСС УрО РАН
  • V.V. Titov, Institute of Continuous Media Mechanics UB RAS
    инженер-исследователь, ИМСС УрО РАН; e-mail: titov.v@icmm.ru

References

  1. Vasil’ev A.U., Suhanovskij A.N., Stepanov R.A. Konvektivnaa turbulentnost’ v kubiceskoj polosti pri neodnorodnom nagreve niznej granicy // Vycislitel’naa mehanika splosnyh sred. - 2019. - No 1. - S. 17-26.
  2. Gersuni G.Z., Zuhovickij E.M., Nepomnasij A.A.Ustojcivost’ konvektivnyh tecenij. - M.: Nauka, 1989. - 320 c.
  3. Zimin V.D., Frik P.G. Turbulentnaa konvekcia. - M.: Nauka, 1988. - 178 c.
  4. Ahlers G., Grossmann S., Lohse D. Heat transfer and large-scale dynamics in turbulent Rayleigh-Benard convection // Rev. Mod. Phys. - 2009. - Vol. 81. - No 2. - P. 503-537.
  5. Chilla F., Schumacher J. New perspectives in turbulent Rayleigh-Benard convection // Eur. Phys. J. E. - 2012. - Vol. 35, No 7. - P. 58.
  6. Sukhanovskii A., Evgrafova A., Popova E. Horizontal rolls over localized heat source in a cylindrical layer // Physical D: Nonlinear Phenomena. - 2016. - Vol. 316. - P. 23-33.
  7. Miroshnichenko I., Sheremet M. Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: A review // Renew Sustain Energy Rev. - 2018. - Vol. 82. - P. 40-59. DOI.
  8. Vasiliev A., Sukhanovskii A. and Frick P. Turbulent convective flows in a cubic cavity at high Prandtl number // Journal of Physics: Conference Series. - 2016. - Vol. 754. - P. 022010.
  9. Titov V. and Stepanov R. Heat transfer in the infinite layer with a fractal distribution of a heater // IOP Conference Series: Materials Science and Engineering. - 2017. - Vol. 208. - P. 012039.

Published

2020-07-22

Issue

Section

Research: theory and experiment

How to Cite

Stepanov, R. ., Sukhanovskii, A. ., Vasiliev, A. ., Popova, E. ., & Titov, V. . (2020). The influence of the topology of the heated surface on the efficiency of heat transfer between the wall and liquid coolant. Perm Federal Research Centre Journal, 2, 17-22. https://doi.org/10.7242/2658-705X/2020.2.2