Mathematical modeling of frozen rock massifs temperature fields considering phase transitions during the shaft deepening

Authors

  • R.N. Suleimanov Perm National Research Polytechnic University
  • A.A. Chekalkin Perm National Research Polytechnic University

DOI:

https://doi.org/10.7242/2658-705X/2020.2.1

Keywords:

frozen rock massif, thermal conductivity, heat capacity, well, shaft, mathematical modeling, unsteady thermal conductivity

Abstract

The object of the research is the formation of frozen rock massif during the shaft deepening. The purpose of the work is to create a mathematical model of the rock mass dimensional temperature fields in the process of freezing wells during the mine shaft penetration. This work was carried out at the Perm National Research Polytechnic University. Design calculations provided by the customer, analytical solution of the unsteady heat conduction equation to determine the preliminary calculation of time of the frozen rock massif formation were done. ANSYS application package was used to simulate the dynamics of the temperature field in this work, with which it is also possible to determine the ice formation time in the rock massif. The initial geometrical and thermophysical information was prepared in the geographic information system «ArcGIS». Dependences frozen rock massif thickness on time and the initial temperature of the environment are obtained. The approximate dates for the formation the required thickness of the frozen rock massif, which are required for the shaft deepening, are determined.

Supporting Agencies
Статья подготовлена при финансовой поддержке гранта РФФИ № 16-41-590375р-а «Структурно-неоднородные модели тепло-массопереноса, деформирования и разрушения компонентов структуры искусственных геокомпозитов и пространственно неоднородных ледопородных массивов с учетом фазовых переходов».

Author Biographies

  • R.N. Suleimanov, Perm National Research Polytechnic University
    аспирант, Пермский национальный исследовательский политехнический университет (ПНИПУ)
  • A.A. Chekalkin, Perm National Research Polytechnic University
    доктор физико-математических наук, профессор, ПНИПУ

References

  1. Averin B.V. Obsaa shema resenij kraevoj zadaci nestacionarnoj teploprovodnosti s vnutrennimi istocnikami teploty dla mnogoslojnyh konstrukcij // Vestnik Samarskogo tehniceskogo universiteta. Seria: Fiz.-Mat. Nauki. - 2009. - No 2(19). - S. 274-277.
  2. Agiseva D.K., Sapovalov V.M. Inzenernyj analiz nestacionarnoj teploprovodnosti mnogoslojnoj plastiny // Izvestia TGTU. - 2002. - T.8. - S. 612-617.
  3. Vengerov I.R. Teplofizika saht i rudnikov. Matematiceskie modeli. Tom 1. Analiz paradigmy. - Doneck: Nord-Press, 2008. - 632 s.
  4. Inzenernyj analiz v ANSYS Workbench: Uceb. posob. / V.A. Bruaka, V.G. Fokin, E.A. Soldusova [i dr.]. - Samara: SamGTU, 2010. - 271 s.
  5. Kapustin S.A. Metod vzvesennyh nevazok resenia zadaca mehaniki deformiruemyh tel i teploprovodnosti: Uceb. posobie. - Niznij Novgorod: Nizegorodskij gosuniversitet, 2010. - 60 s.
  6. Kartasov E.M. Integral’nye sootnosenia dla analiticeskih resenij obobsennogo uravnenia nestacionarnoj teploprovodnosti // Vestnik MITHT. - 2011. - T. 6 - No3. - S. 106-110.
  7. Konecno-elementnoe modelirovanie zadac geomehaniki i geofiziki / Vlasov A.N., VolkovBogorodskij D.B., Zamentskij V.V. [i dr.] // Vestnik MGSU. - 2012. - No2. - S. 52-65.
  8. Konovalov V.I., Pahomov A.N., Gatapova N.C., Koliuh A.N. Metody resenia zadac teplomassoperenosa. Teploprovodnost’ i diffuzia v nepodviznoj srede: Uceb. posobie. - Tambov: Izd-vo Tamb. Gos. tehn. Un-ta, 2005. - 80 s.
  9. Konstantinova S.A., Hronusov V.V. K ocenke regional’nyh naprazenij v verhnej casti zemnoj kory Urala i Volgo-Kamskogo geobloka v ramkah modeli blocnogo massiva // Fiziko-tehniceskie problemy razrabotki poleznyh iskopaemyh.- 1998. - No5. - S. 60-70.
  10. Konstantinova S.A., Hronusov V.V. Proavlenie gornogo davlenia vokrug podzemnyh vyrabotok v kalijnyh rudnikah v slucae negidrostaticeskogo nacal’nogo naprazennogo sostoania // Fizikotehniceskie problemy razrabotki poleznyh iskopaemyh. - 1999. - No2. - S. 25-34.
  11. Kuznecov G.V., Sermet M.A. Raznostnye metody resenia zadac teploprovodnosti: Uceb. posobie. - Tomsk: Izd-vo TPU, 2007. - 172 s.
  12. Mardanov R.F. Cislennye metody resenia ploskoj zadaci teploprovodnosti: Ucebnometodiceskoe posobie. - Kazan’: Izd-vo Kazanskogo gos. un-ta, 2007. - 23 s.
  13. Matasov D.M., Gubeladze O.A. Opredelenie temperaturnogo pola v dvuhslojnom tolstostennom cilindre konecnyh razmerov pri dejstvii istocnika tepla prostojnoj mosnosti // Izvestia UFU. Tehniceskih nauki. Tematiceskij vypusk <>. -2008. - No 11 (88). - S. 25-29.
  14. Milaev. A.S. Al’ternativnaa metodika rasceta promerzania sloistyh osnovanij sezonnyh zimnih lesovoznyh dorog // resour. Technol. - 2010. - No 8. - S. 83-87.
  15. Nemirovskij U.V., Ankovskij A.P. Cislennoe integrirovanie dvumernyh kraevyh zadac s bol’simi gradientami resenia // Vycislitel’nye tehnologii. - 2000. - T. 5. - No4.- S. 82-96.
  16. Rumancev A.V. Metod konecnyh elementov v zadacah teploprovodnosti: Uceb. posob. - Kaliningrad: Kaliningr. un-t, 1995. - 170 s.
  17. Tihonov A.N., Samarskij A.A. Uravnenia matematiceskoj fiziki: Uceb. posobie. 6-e izd., ispr. i dop. - M.: Izd-vo MGU, 1999. - 798 s.
  18. Usmanov S.F. Sovremennoe programmnoe obespecenie dla resenia zadac geomehaniki // Vestnik KRSU. - 2008. - T. 8. - No 1. - S. 81-84.
  19. Fedukin V.A. Prohodka stvolov saht sposobom zamorazivania. - M.: Nedra, 1968. - 350 s.
  20. Fokin V.M., Bojkov G.P., Vidin U.V. Osnovy tehniceskoj teplofiziki: Monografia. - M.: Masinostroenie-1, 2004. - 172 s.
  21. Caplin A.I. Teplofizika v metallurgii: uceb. posobie. - Perm’: Izd-vl Perm. gos. tehn. un-ta, 2008. - 230 s.
  22. Cuprov I.F., Kaneva E.A. Uravnenia paraboliceskogo tipa i nekotorye metody ih resenia: Uceb. posob. - Uhta: UGTU, 2012. - 103 s.
  23. Sestakov V.N., Sestakov A.N. Metody teorii teploprovodnosti v transportnom stroitel’stve: uceb. posob. - Omsk: SibADI, 2011. - 72 s.

Published

2020-07-22

Issue

Section

Research: theory and experiment

How to Cite

Suleimanov, R. ., & Chekalkin, A. . (2020). Mathematical modeling of frozen rock massifs temperature fields considering phase transitions during the shaft deepening. Perm Federal Research Centre Journal, 2, 6-16. https://doi.org/10.7242/2658-705X/2020.2.1