Theoretical and experimental research of thin-walled structures interacting with viscous fluid
DOI:
https://doi.org/10.7242/2658-705X/2020.1.1Keywords:
viscous potential fluid, thin-walled structures, stability, natural vibrations, decrement of vibrations, FEMAbstract
The results of studying thin-walled plates and cylindrical shells interacting with the stationary or flowing viscous compressible fluid are presented. The numerical solution of the problem has been carried out using the finite element method. The motion of liquid medium is described by the system of linearized Navier-Stokes equations, the solution of which is sought for in the form of the acoustic approximation in terms of velocity perturbation potential. The relations obtained for liquid and the corresponding boundary conditions are transformed by the Bubnov-Galerkin method. The behavior of a thin-walled structure is described in the framework of the classical theory of thin plates. The mathematical formulation of the dynamic problem of an elastic body is based on the variational principle of virtual displacements. Stability estimation is based on the calculation and analysis of complex eigenvalues of a coupled system of equations. The influence of fluid viscosity and other parameters on the natural vibration frequencies and critical velocities responsible for the loss of structural stability has been analyzed. The natural frequencies and the corresponding decrements of harmonic vibrations of rectangular plates located in the air and on the free liquid surface have been studied with the help of developed experimental setup. It has been found out that the damping coefficient corresponding to one vibration mode (bending or torsional) grows with an increase in the number of nodal lines. It has been demonstrated that this relation can be violated during the interaction of the plates with the liquid.
References
- Bockarev S.A., Lekomcev S.V., Senin A.N. Analiz prostranstvennyh kolebanij koaksial’nyh cilindriceskih obolocek, casticno zapolnennyh zidkost’u // Vycislitel’naa mehanika splosnyh sred. - 2018. - T. 11. - No 4. - S. 448-462.
- Vol’mirA.S. Obolocki v potoke zidkosti i gaza. Zadaci gidrouprugosti. - M.: Nauka, 1979. - 320 s.
- Guz’ A.N. Problemy gidrouprugosti dla szimaemoj vazkoj zidkosti // Prikladnaa mehanika. - 1991. - T. 27. - No 1. - S. 3-15.
- Zenkevic O.S. Metod konecnyh elementov v tehnike. - M.: Mir, 1975. -544 s.
- Il’gamovM.A. Kolebania uprugih obolocek, soderzasih zidkost’ i gaz. - M.: Nauka, 1969. - 182 s.
- Kondratov D.V., Mogilevic L.I. Matematiceskoe modelirovanie processov vzaimodejstvia dvuh cilindriceskih obolocek so sloem zidkosti mezdu nimi pri otsutstvii torcevogo istecenia v uslovia vibracii // Vestnik SGTU. - 2007. - T. 3. - No 2. - S. 15-23.
- SlihtingG. Teoria pogranicnogo sloa. - M.: Nauka, 1974. - 712 s.
- Amabili M., Garziera R. Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass; Part II: Shells containing or immersed in axial flow // J. Fluids Struct. - 2002. - Vol. 16. - P. 31-51.
- Amabili M., Garziera R. Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass; Part III: steady viscous effects on shells conveying fluid // J. Fluids Struct. - 2002. - Vol. 16. - P. 795-809.
- Bochkarev S., Kamenskikh A., Lekomtsev S. Experimental and numerical investigation of eigenfrequencies of rectangular plates, interacting with a fluid // MATEC Web Conf. - 2018. - Vol. 148. - 07002.
- Bochkarev S.A., Matveenko V.P. Stability analysis of loaded coaxial cylindrical shells with internal fluid flow // Mech. Sol. - 2010. - Vol. 45. - P. 789-802.
- Bochkarev S.A., Matveenko V.P. The dynamic behaviour of elastic coaxial cylindrical shells conveying fluid // J. Appl. Math. Mech. - 2010. - Vol. 74. - P. 467-474.
- El Chebair A., Misra A.K., Paidoussis M.P. Theoretical study of the effect of unsteady viscous forces on inner- and annular-flow-induced instabilities of cylindrical shells // J. Sound Vib. - 1990. - Vol. 138. - No 3. - P. 457-478.
- El Chebair A., Paidoussis M.P., Misra A.K. Experimental study of annular-flow-induced instabilities of cylindrical shells // J. Fluids Struct. - 1989. - Vol. 3. -P. 349-364.
- Horacek J., Trnka J., Vesely J., Gorman D.G. Vibration analysis of cylindrical shells in contact with an annular fluid region // Eng. Struct. - 1995. - Vol. 17. - No 10. - P. 714-724.
- Horacek J., Zolotarev I. Free vibration and stability of cylindrical shells in interaction with flowing fluid // In: Pellicano F., Mikhlin Y., Zolotarev I., NATO CLG Grant Report No. PST.CLF.977350. - Prague: F. Institute of Thermomechanics, 2002. - P. 45-82.
- Joseph D.D. Viscous potential flow // J. Fluid Mech. - 2003. - Vol. 479. - P. 191-197.
- Joseph D., Funada T., Wang J. Potential flows of viscous and viscoelastic fluids. - Cambridge: Cambridge University Press, 2008. - 516 p.
- Lehoucq R.B., Sorensen D.C. Deflation techniques for an implicitly restarted Arnoldi iteration // SIAM J. Matrix Anal. Appl. - 1996. - Vol. 17. - No 4. - P. 789-821.
- Mokeyev V.V. On a method for vibration analysis of viscous compressible fluid-structure systems // Int. J. Num. Meth. Eng. - 2004. - Vol. 59. - No 13. - P. 1703-1723.
- Nguyen V.B., Paidoussis M.P., Misra A.K. A CFD-based model for the study of the stability of cantilevered coaxial cylindrical shells conveying viscous fluid // J. Sound Vib. - 1994. - Vol. 176. - P. 105-125.
- Nguyen V.B., Paidoussis M.P., Misra A.K. An experimental study of the stability of cantilevered coaxial cylindrical shells conveying fluid // J. Fluids Struct. - 1993. - Vol. 7. - P. 913-930.
- Ning W.B., Wang D.Z. Dynamic and stability response of a cylindrical shell subjected to viscous annular flow and thermal load // Int. J. Str. Stab. Dyn. - 2016. -Vol. 16. - 1550072.
- Ning W.B., Wang D.Z., Zhang J.G. Dynamics and stability of a cylindrical shell subjected to annular flow including temperature effects // Arch. Appl. Mech. - 2016. - Vol. 86. - P. 643-656.
- Ning W.-B., Xu Y., Liao Y.-H., Li Z.-R. Effects of geometric parameters on dynamic stability of the annular flow-shell system // Proceedings of the 3rd Annual International Conference on Mechanics and Mechanical Engineering (MME 2016). - Atlantis Press, 2017. - Vol. 150. - P. 344-350.
- Paidoussis M.P. Fluid-Structure Interactions: Slender Structures and Axial Flow, Vol. 1, 2nd ed. - London: Elsevier Academic Press, 2014. - 888 p.
- Paidoussis M.P. Fluid-Structure Interactions: Slender Structures and Axial Flow, Vol. 2, 2nd ed. - London: Elsevier Academic Press, 2016. - 942 p.
- Paidoussis M.P., Misra A.K., Chan S.P. Dynamics and stability of coaxial cylindrical shells conveying viscous fluid // Appl. Mech. - 1985. - Vol. 52. - P. 389-396.
- Paidoussis M.P., Misra A.K., Nguyen V.B. Internal- and annular-flow-induced instabilities of a clamped- clamped or cantilevered cylindrical shell in a coaxial conduit: the effects of system parameters // J. Sound Vib. - 1992. - Vol. 159. - P. 193-205.
- Paidoussis M.P., Nguyen V.B., Misra A.K. A theoretical study of the stability of cantilevered coaxial cylindrical shells conveying fluid // J. Fluids Struct. - 1991. - Vol. 5. - P. 127-164.
- Reddy J.N. An introduction to nonlinear finite element analysis. 2nd Ed. - Oxford: Oxford University Press, 2015. - 687 p.
- Yeh T. T. Chen S.S. Dynamics of a cylindrical shell system coupled by viscous fluid // J. Acoust. Soc. Am. - 1977. - Vol. 62. - No 2. - P. 262-270.
- Yeh T.T., Chen S.S. The effect of fluid viscosity on coupled tube/fluid vibrations // J. Sound Vib. - 1978. - Vol. 59. - No 53. - P. 453-467.