Experimental study of damage accumulation staging in gigacycle fatigue of aviation motors materials

Authors

  • M.V. Bannikov Institute of Continuum Media Mechanics UB RAS
  • I.A. Bannikova Institute of Continuum Media Mechanics UB RAS
  • V.A. Oborin Institute of Continuum Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/2658-705X/2019.4.5

Keywords:

damage accumulation kinetics, scaling, high-and very high cycle fatigue, mathematical modeling, destruction, mesoscopic defects

Abstract

Paper presents the «in situ» method for determining irreversible fatigue damage accumulation based on the analysis of nonlinear manifestations of the feedback signal in a closed system of an ultrasonic fatigue machine. During very high cycle (gigacycle) fatigue, the anomalies appear of the material elastic properties appear, which leads to a nonlinearity effect in the amplitude of oscillations. This effect increases with the initiation and growth of fatigue cracks. The technology was applied to samples of AlMG-6 alloy with preliminary dynamic deformation to determine the moment of initiation and growth of the fatigue crack in very high cycle fatigue regime. This method is applicable for the early detection of fatigue cracks both on the surface, and inside the material under cyclic loading in the ultrasonic mode. On the basis of wide-range defining relations for a deformable solid body with mesoscopic defects, a mathematical model has been proposed that can adequately describe behavior of the material during fatigue failure. The results of mathematical modeling are in good agreement with the experimental data.

Supporting Agencies
Статья подготовлена при финансовой поддержке гранта РФФИ № 16-41-590892 р_а «Экспериментальное исследование стадийности поврежденности при сверхмногоцикловой усталости материалов авиационного моторостроения».

Author Biographies

  • M.V. Bannikov, Institute of Continuum Media Mechanics UB RAS
    кандидат физико-математических наук, научный сотрудник лаборатории Физических основ прочности Института механики сплошных сред УрО РАН (ИМСС УрО РАН)
  • I.A. Bannikova, Institute of Continuum Media Mechanics UB RAS
    кандидат физико-математических наук, сотрудник лаборатории Физических основ прочности, ИМСС УрО РАН
  • V.A. Oborin, Institute of Continuum Media Mechanics UB RAS
    ведущий инженер лаборатории Физических основ прочности, ИМСС УрО РАН

References

  1. Botvina L.R. Gigaciklovaa ustalost’ - novaa problema fiziki i mehaniki razrusenia // Zavodskaa laboratoria. Diagnostika materialov. - 2004. - T. 70. - No 4. - S. 41.
  2. Bathias C., Paris P. C. Gigacycle Fatigue in Mechanical Practice. - Marcel Dekker Publisher Co, 2005. - 328 p.
  3. Oborin V.A., Bannikov M.V., Najmark O.B., Palin-Luc T. Masstabnaa invariantnost’ rosta ustalostnoj tresiny pri gigaciklovom rezime nagruzenia // Pis’ma v zurnal tehniceskoj fiziki. - 2010. - T. 36. -Vyp. 22. - C. 76-82. DOI
  4. Cowles B.A. High cycle fatigue in aircraft gas turbines - an industry perspective // International Journal of Fracture, - 1996. - Vol. 80. - P. 147-163. DOI
  5. Sanavskij A.A. Modelirovanie ustalostnyh razrusenij metallov. Sinergetika v aviacii. - Ufa: OOO <>, 2007. - 500 c.
  6. Nicholas T. High Cycle Fatigue. A Mechanics of Material Perspective. - Elsevier, - 2006. - 641 p.
  7. Peters J.O., Ritchie R.O. Influence of foreign object damage on crack initiation and early crack growth during high-cycle fatigue of Ti-6Al-4V, // Eng. Fract. Mech, - 2006. - Vol. 67. - P. 193-207.
  8. Spanrad S., Tong J. Characterisation of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6Al-4V aerofoil specimens // Materials Science and Engineering A, - 2011. - Vol. 528. - P. 2128-2136. DOI
  9. Oakley S. Y., Nowell D. Prediction of the combined high- and low-cycle fatigue performance of gas turbine blades after foreign object damage // International Journal of Fatigue, - 2007. - Vol. 29. - P. 69-80. DOI
  10. Chen Xi. Foreign object damage on the leading edge of a thin blade // Mechanics of Materials, - 2005. - Vol. 37. - P. 447-457. DOI
  11. Nowell D., Duo P., Stewart I.F. Prediction of fatigue performance in gas turbine blades after foreign object damage // International Journal of Fatigue, - 2003. - Vol. 25. - P. 963-969. DOI
  12. Mughrabi H. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, - 2015. - Vol. 373(2038). 20140132. DOI
  13. Zhang, Li-Li, [et al.] On the formation mechanisms of fine granular area (FGA) on the fracture surface for high strength steels in the VHCF regime // International Journal of Fatigue, - 2016. - Vol. 82. - P. 402 -410. DOI
  14. Oborin V., Sokovikov M., Bilalo D., & Naimark O. Multiscale study of morphology of the fracture surface aluminum-magnesium alloy with consecutive dynamic and gigacycle loading // Procedia Structural Integrity, - 2016. - Vol. 2. - P. 1063-1070. DOI
  15. Froustey C., Naimark O., Bannikov M., Oborin V. Microstructure scaling properties and fatigue resistance of pre-strained aluminium alloys (part 1: AlCu alloy // European Journal of Mechanics A/Solids, - 2010. - Vol. 29. - P. 1008-1014. DOI
  16. Oborin V.A., Bayandin Yu. V., Bilalov D. A., Sokovikov M. A., Chudinov V. V, Naimark O. B. Self-similar laws of damage development and evaluation of the reliability of alloys D16T and AMg6 under combined dynamic and gigacycle loading // Phys. Mezomekh, - 2018. - Vol. 21(6). - P. 135-145 DOI
  17. John H. Cantrell, William T. Yost Nonlinear ultrasonic characterization of fatigue microstructures // Int. J. of Fatigue, - 2001. - Vol. 23. - P. 487-490. DOI
  18. Kumar A., Torbet J.C. Pollock M.T., Jones W.J. In situ characterization of fatigue damage evolution in a cast Al alloy via nonlinear ultrasonic measurements // ActaMaterialia, - 2010. - Vol. 58(6). - P. 2143-2154. DOI
  19. Kumar A. [et al.] In situ damage assessment in a cast magnesium alloy during very high cycle fatigue // ScriptaMaterialia, - 2011. - Vol. 64(1). - P.65-68. DOI
  20. Nazarov AA. Neravnovesnye granicy zeren v ob"emnyh nanostrukturnyh materialah i ih vozvrat pod vlianiem nagreva i cikliceskoj deformacii. Obzor // Pis’ma o materialah, - 2018. - T. 8. - No 3. - s. 372-381 DOI
  21. Li W., Cui H., Wen W., Su X., C.C. Engler-Pinto Jr.: In situ Nonlinear Ultrasonic for Very High Cycle Fatigue Damage Characterization of a Cast Aluminum Alloy // Materials Science and Engineering A, - 2011. - Vol. 645. P. 248-254. DOI
  22. Bilalov D.A., Baandin U.V., Najmark O.B. Matematiceskoe modelirovanie processa razrusenia splava AMg2.5 v rezime mnogo- i gigaciklovoj ustalosti // Vycislitel’naa mehanika, - 2018. - T. 11. - No 3. - s. 323-334. DOI
  23. Naimark O.B. Collective properties of defects ensembles and some nonlinear problems of plasticity and fracture // Physical mesomechanics, - 2003. - Vol. 6(4), P. 39-63.
  24. Bannikov M., Bilalov D., Oborin V., Naimark O. Damage evolution in the AMg6 alloy during high and very high cycle fatigue, Frattura ed Integrita Strutturale, - 2019. - Vol. 49. - R. 383-395; DOI
  25. Glushak B.L., Ignatova O.N., Pushkov V.A., Novikov S.A., Girin A.S., Sinitsyn V.A. Dynamic Deformation of Aluminum Alloy AMg-6 at Normal and Higher Temperatures, Journal of Applied Mechanics and Technical Physics., - 2000. - Vol. 41(6). - P. 1083-1086. DOI
  26. Frolov K.V. Mechanical Engineering. Encyclopedia. Volume II-3: Non-ferrous metals and alloys. Composite metallic materials. - Moscow, Mechanical Engineering, - 2001.- 880 p.
  27. Akovleva T.U., Matohnuk L.E. Prognozirovanie harakteristik soprotivlenia ustalosti metallov pri razlicnyh castotah nagruzenia // Problemy procnosti, -2004. - No 4. - S. 145-155.

Published

2019-12-23

Issue

Section

Research: theory and experiment

How to Cite

Bannikov, M. ., Bannikova, I. ., & Oborin, V. . (2019). Experimental study of damage accumulation staging in gigacycle fatigue of aviation motors materials. Perm Federal Research Centre Journal, 4, 50-58. https://doi.org/10.7242/2658-705X/2019.4.5