Scale-invariant patterns of damage development in AMg6 alloy under consecutive dynamic and gigacycle loading

Authors

  • V.A. Oborin Institute of Continuous Media Mechanics UB RAS
  • M.A. Sokovikov Institute of Continuous Media Mechanics UB RAS
  • O.B. Naimark Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/2658-705X/2019.4.4

Keywords:

fracture, gigacycle fatigue, scaling, surface morphology, Paris law, crack growth kinetics

Abstract

A study of fatigue crack growth kinetics in aluminum alloy AMg-6 in gigacycle fatigue mode at preliminary dynamic deformation has been carried out. The relevance of the statement is determined by the critical applications of estimating materials and structural elements resource of aircraft gas turbine engines in terms of flight cycle with random dynamic effects. Preliminary loading of samples was carried out by the dynamic tension on Hopkinson-Kolsky rod split at strain rates up to ~103 s-1 subsequent gigacycle loading on the ultrasonic testing machine Shimadzu USF-2000 quantitative analysis and fractography of fractures based on the data from profilometry and scanning electron microscopy. The authors propose an original form of kinetic equation which relates the rate of the fatigue crack growth with changes in the stress intensity factor. The scale invariance of defect structures responsible for the formation of the fracture surface relief under gigacycle fatigue loading was found out to be related to the power exponent of the Paris law.

Supporting Agencies
Исследование выполнено при финансовой поддержке РФФИ и Пермского края в рамках научных проектов № 16-48-590534 «Разработка методов оценки надежности материалов авиационного назначения при комбинированном динамическом и последующем гигацикловом нагружении» и № 19-48-590009 «Разработка методических подходов по оценке коррозионного ресурса материалов авиационного назначения при комбинированном (динамическом, ударно-волновом) и последующем гигацикловом нагружении».

Author Biography

  • V.A. Oborin, Institute of Continuous Media Mechanics UB RAS
    ведущий инженер лаборатории Физических основ прочности, Институт механики сплошных сред УрО РАН - филиал Пермского федерального исследовательского центра УрО РАН (ИМСС УрО РАН)

References

  1. Cowles B.A. High cycle fatigue in aircraft gas turbines - an industry perspective // International Journal of Fracture - 1996. - Vol. 80 - P. 147-163.
  2. Sanavskij A.A. Modelirovanie ustalostnyh razrusenij metallov. Sinergetika v aviacii // - Ufa: OOO <>. - 2007. - 500 c.
  3. Nicholas T. High Cycle Fatigue. A Mechanics of Material Perspective // Elsevier. - 2006. - 641 p.
  4. Peters J. O., Ritchie R. O. Influence of foreign object damage on crack initiation and early crack growth during high-cycle fatigue of Ti-6Al-4V // Eng. Fract. Mech. - 2000. - Vol. 67. - P. 193-207.
  5. Spanrad S., Tong J. Characterisation of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6Al-4V aerofoil specimens // Materials Science and Engineering A - 2011. - Vol. 528 - P. 2128-2136.
  6. Oakley S.Y., Nowell D. Prediction of the combined high- and low-cycle fatigue performance of gas turbine blades after foreign object damage // International Journal of Fatigue 29 - 2007. - P. 69-80.
  7. Chen Xi Foreign object damage on the leading edge of a thin blade // Mechanics of Materials - 2005 - Vol. 37 - P. 447-457.
  8. Nowell D., Duo P., Stewart I.F. Prediction of fatigue performance in gas turbine blades after foreign object damage // International Journal of Fatigue - 2003 - Vol. 25 - P. 963-969.
  9. Franklin J. Foreign Object Damage in the UK RAF // National Aerospace FOD Prevention Inc. (NAFPI), 1- st Int. conference, London - 2003.
  10. Feder E., Danilov U. A., Sukurov A. Fraktaly. - M.: Mir, 1991. 254 s.
  11. Mandelbrot B.B. The fractal geometry of nature // N.Y.: Freeman 1983. - 480 p.
  12. BouchaudE. Scaling properties of cracks // J. Phys. Condens. Matter. - 1997. - Vol. 9. -P. 4319- 4344.
  13. Lakisev N.P. Diagrammy sostoania dvojnyh metalliceskih sistem. Tom 1. - M.: Masinostroenie, 1996. - 992 s.
  14. Barenblatt G.I. Scaling phenomena in fatigue and fracture // Int. J. of Fracture. - 2006. - Vol. 138. - P. 19-35.
  15. Barenblatt G.I., Botvina L.R. Avtomodel’nost’ ustalostnogo razrusenia. Nakoplenie povrezdennosti. - Izv. AN SSSR, Mehanika tverd. tela. - 1983. - No 4. - S. 161- 165.
  16. Hertzberg R. W. On the calculation of closure-free fatigue crack propagation data in monolithic metal alloys // Materials Science and Engineering A. - 1995. - Vol. 190. - P. 25-32.
  17. Bilalov D.A., Baandin U.V., Najmark O.B. Matematiceskoe modelirovanie processa razrusenia splava AMg2.5 v rezime mnogo- i gigaciklovoj ustalosti // Vycislitel’naa mehanika splosnyh sred. - 2018. - T. 11. No 3. - S. 323-334.
  18. Oborin V.A., Bannikov M.V., Najmark O.B., Palin-Luc T. Masstabnaa invariantnost’ rosta ustalostnoj tresiny pri gigaciklovom rezime nagruzenia // Pis’ma v zurnal tehniceskoj fiziki. - 2010. - T. 36. -Vyp. 22. - C. 76-82.

Published

2019-12-23

Issue

Section

Research: theory and experiment

How to Cite

Oborin, V. ., Sokovikov, M. ., & Naimark, O. . (2019). Scale-invariant patterns of damage development in AMg6 alloy under consecutive dynamic and gigacycle loading. Perm Federal Research Centre Journal, 4, 41-49. https://doi.org/10.7242/2658-705X/2019.4.4