Inflatable antenna for a nanosatellite

Authors

  • L.A. Komar Institute of Continuous Media Mechanics UB RAS
  • A.G. Pelevin Perm State National Research University
  • I.V. Osorgina Perm State National Research University
  • V.G. Gilev Perm State National Research University
  • A.L. Svistkov Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/2658-705X/2019.4.2

Keywords:

nanosatellite, inflatable antenna, prepreg, hardening, reaction mixture, evaporation, flight experiment, space

Abstract

A topical problem for near-Earth orbit nanosatellites is the creation of a reliable inflatable antenna. The nanosatellite antenna should be small-sized and should take the given form after launching into orbit. This paper proposes a technology for manufacturing an inflatable antenna from prepreg which is hardened in space orbit. At the same time, all the advantages of inflatable antennas are preserved (small volume and weight, simplicity of design and reliability of bringing into working condition, long-distance steady communication). Small dust particles moving at cosmic speeds cannot damage such an antenna. There is also no need to constantly pump gas into the inflatable elements of the antenna, hence there is no need for mechanisms to provide adjustment of gas supply, additional tanks with gas or tanks with chemical elements to obtain it. The process of selecting a suitable reaction mixture for pre-preg hardening is considered in the paper, the main criteria for the selection being low volatility of its components and hot hardening ability. The results of stratospheric balloon flight with pre-preg samples are given. The design of the inflatable antenna is proposed.

Supporting Agencies
Работа выполнена при поддержке Российского фонда фундаментальных исследований, грант № 16-48-590003-р_урал_а.

Author Biographies

  • L.A. Komar, Institute of Continuous Media Mechanics UB RAS
    кандидат физико-математических наук, старший научный сотрудник, Институт механики сплошных сред УрО РАН - филиал Пермского федерального исследовательского центра УрО РАН (ИМСС УрО РАН)
  • A.G. Pelevin, Perm State National Research University
    младший научный сотрудник, Пермский государственный национальный исследовательский университет (ПГНИУ)
  • I.V. Osorgina, Perm State National Research University
    ведущий инженер ПГНИУ
  • V.G. Gilev, Perm State National Research University
    кандидат физико-математических наук, доцент ПГНИУ
  • A.L. Svistkov, Institute of Continuous Media Mechanics UB RAS
    доктор физико-математических наук, заведующий лабораторией микромеханики структурно-неоднородных сред, ИМСС УрО РАН

References

  1. Kondyurin A.V. Building the shells of large space stations by the polymerisation of epoxy composites in open space // International Polymer Science and Technology. -1998. - Vol. 25. No 4. - P. 78-80.
  2. Kondyurin A., Lauke B., Richter E. Polymerization Process of Epoxy Matrix Composites under Simulated Free Space Conditions // High Performance Polymers. - 2004. - Vol. 16. - P. 163-175.
  3. Kondyurin A.V., Lauke B., Vogel R., Nechitailo G. Kinetics of photocuring of matrix of composite material under simulated conditions of free space // Plasticheskie massi - 2007. - Vol. 11. - P. 50-55.
  4. Kondurin A.V., Necitajlo G.S. Kompozicionnyj material dla naduvnyh konstrukcij, fotopolimerizuusijsa v usloviah orbital’nogo kosmiceskogo poleta // Kosmonavtika i raketostroenie. - 2009. - T. 3 (56). - S. 182-190.
  5. Kondyurin A.V., Bilek M. M. M., Kondyurina I.V., Vogel R., de Groh K.K. First Stratospheric Flight of Preimpregnated Uncured Epoxy Matrix // Journal of Spacecraft and Rockets. - 2016. - Vol. 53. - No 6. - P. 1019-1027.
  6. Block J., Straubel M., Wiedemann M. Ultralight deployable booms for solar sails and other large gossamer structures in space // Acta Astronautica. - 2011. - Vol. 68. - P. 984-992.
  7. Babuscia A., Corbin B., Knapp M., Jensen-Clem R., Van de Loo M., Seager S. Inflatable antenna for cubesats: Motivation for development and antenna design // Acta Astronautica. - 2013. - Vol.91. - P. 322-332.
  8. Gu Y., Duan B., Du J. The establishment and application of direct coupled electrostatic-structural field model in electrostatically controlled deployable membrane antenna // Acta Astronautica. - 2018. - Vol. 146. - P. 185-191.
  9. Lopatin A.V., Rutkovskaa M.A. Obzor konstrukcij sovremennyh transformiruemyh kosmiceskih antenn (Cast’ 1) // Vestnik Sibirskogo gosudarstvennogo aerokosmiceskogo universiteta im. akademika M.F. Resetnikova. - 2007. - No 2 (15). - C. 51-57.
  10. Wei J.Z., Tan H.F., Du X.W. Research progress of deployment dynamics of Space inflatable booms // Advances in mechanics. - 2008. - Vol. 38. - No 2. - P. 177-189.
  11. Salama M., Kuo C. P., Lou M. Simulation of deployment dynamics of inflatable structures // AIAA Journal. - 2000. - Vol. 38. - No 12. - P. 2277-2283.
  12. Freeland R.E., Bilyeu G.D., Veal G.R. Development of flight hardware for a large, inflatable-deployable antenna - experiment // Acta astronautica: 46 Int. Actron. Fed. Congress, Oslo, 2-6 Oct. - 1995. - Vol. 38. - No 4-8. - P. 251-260.
  13. Pestrenin V.M., Pestrenina I.V., Rusakov S.V., Kondurin A.V. Razvertyvanie krupnogabaritnyh obolocecnyh konstrukcij vnutrennim davleniem // Mehanika kompozitnyh materialov. - 2015. - T. 51. - No 5. - S. 889-898.
  14. Gilev V.G., Rusakov S.V., Pestrenin V.M., Pestrenina I.V. Ocenka zestkosti razvertyvaemoj vnutrennim davleniem cilindriceskoj kompozitnoj obolocki na nacal’nom etape polimerizacii svazuusego // Vestnik Permskogo nacional’nogo issledovatel’skogo politehniceskogo universiteta. Mehanika. - 2018. - No 1. S. 93-99.
  15. Najmusin A.P., Pestrenin V.M., Pestrenina I.V. Issledovanie progreva krupnogabaritnoj obolocecnoj konstrukcii na okolozemnoj orbite pod dejstviem solnecnogo izlucenia // Vestnik Permskogo universiteta. Matematika. Mehanika. Informatika. - 2013. - No 4 (23). - S. 51-54.
  16. Svistkov A.L., Eliseeva A.U., Kondurin A.V. Matematiceskaa model’ reakcii otverzdenia ED-20 s otverditelem TEAT-1 // Vestnik Permskogo universiteta. Fizika. - 2019. - No 1. - S. 9-16. 17.
  17. Eliseeva A.U., Svistkov A.L., Kondurin A.V. Matematiceskaa model’ reakcii goracego otverzdenia preprega // Vestnik Permskogo universiteta. Fizika. - 2017. - No 4 (38). - S. 19-25. https://doi.org/10.17072/1994-3598-2017-4-19-25.
  18. Evlampieva S.E., Belaev A.U., Mal’cev M.S., Svistkov A.L. Analiz temperaturnogo rezima otverzdaemyh naduvnyh elementov antenn nanosputnikov // Mehanika kompozicionnyh materialov i konstrukcij. - 2017. - T. 23. - S. 459-469.
  19. Garishin O.K., Svistkov A.L., Belyaev A.Yu., Gilev V.G. On the Possibility of Using Epoxy Prepregs for Carcass-Inflatable Nanosatellite Antennas // Materials Science Forum. - 2018. - Vol. 938. - P. 156-163.

Published

2019-12-23

Issue

Section

Research: theory and experiment

How to Cite

Komar, L. ., Pelevin, A. ., Osorgina, I. ., Gilev, V. ., & Svistkov, A. . (2019). Inflatable antenna for a nanosatellite. Perm Federal Research Centre Journal, 4, 16-25. https://doi.org/10.7242/2658-705X/2019.4.2