Development of piezoelectroluminescent and magnetostriction detectoscopy methods of aviation polymer composition materials with diagnostic piezoactive particles for location and of defects visualization

Authors

  • A.A. Pankov Perm National Research Polytechnic University
  • P.V. Pisarev Perm National Research Polytechnic University
  • M.M. Shobey Perm National Research Polytechnic University

DOI:

https://doi.org/10.7242/2658-705X/2019.3.8

Keywords:

defectoscopy, smart technologies, sensor, mechanoluminescent effect, piezoelectric resonator, optical fiber, integrated equation of Fredholm, electroelasticity, numerical modeling

Abstract

The new piezoelectroluminescent optical fiber sensors are developed for integration into composite structures for the purpose of specified diagnosing and monitoring spatial distributed scalar and tensor physical and mechanical fields, in particular, the temperature, pressure and volumetric deformed state in the loaded composite designs by processing results of intensities for integrated mono or multi-colour light signals at the exit of the sensor fiber. New schemes of the functioning and numerical processing algorithms of informative integrated light signals at the exit of optical fiber sensors were developed. The informative light signal appears as a result of «mechanoluminescent effect» by interaction of piezoelectric and electroluminescent of the sensor layers. Light signals are transmitted via optical fiber to a «receiver analyzer»; control electric signals on the electrodes allow to find locations of heterogeneities of diagnosed fields along the length of the sensor. Results of numerical modeling the «scanned» real distributions and its density functions of the diagnosed fields along the length of sensors are presented; density functions are solutions of the Fredholm integral equation of the 1st kind with the use of the new developed processing algorithms of informative integrated light signals at the exit of the optical fiber.

Supporting Agencies
Работа выполнена при финансовой поддержке гранта РФФИ № 16-41-590726 «Разработка методов пьезоэлектролюминесцентной и магнитострикционной дефектоскопии авиационных полимерных композиционных материалов с диагностирующими пьезоактивными частицами для локации и визуализации дефектов».

Author Biographies

  • A.A. Pankov, Perm National Research Polytechnic University
    доктор физико-математических наук, доцент, профессор кафедры механики композиционных материалов и конструкций, Пермский национальный исследовательский политехнический университет (ПНИПУ)
  • P.V. Pisarev, Perm National Research Polytechnic University
    кандидат технических наук, доцент кафедры механики композиционных материалов и конструкций ПНИПУ
  • M.M. Shobey, Perm National Research Polytechnic University
    заведующий лабораториями кафедры механики композиционных материалов и конструкций ПНИПУ

References

  1. Fraden J. Handbook of Modem Sensors. - Springer-Verlag New York, 2004. - 589 p.
  2. Next Generation Sensors and Systems / Ed.: Mukhopadhyay, Subhas Chandra (Ed.). - Springer International Publishing, 2016. - 330 p.
  3. Fiber Optic Sensors / Ignacio R. Matias, Satoshi Ikezawa, Jesus Corres, Springer International Publishing, 2017. - 381 p.
  4. Sensors and Microsystems / Editors: Leone A., Forleo A., Francioso L., Capone S., Siciliano P., Di Natale C. Proceedings of the 19th AISEM 2017 National Conference, Springer International Publishing, 2018. - 330 p.
  5. Smart Sensors and MEMS / Editors: S. Nihtianov, A. Luque, Woodhead Publishing, 2018. - 604 p.
  6. Kablov E.N., Sivakov D.V., Gulaev I.N., Sorokin K.V., Fedotov M.U., Dianov E.M., Vasil’ev S.A., Medvedkov O.I. Primenenie opticeskogo volokna v kacestve datcikov deformacii v polimernyh kompozicionnyh materialah // Vse materialy. Enciklopediceskij spravocnik. - 2010. -No 3. - S. 10-15.
  7. Sardakov I.N., Sozonov N.S., Cvetkov R.V. Eksperimental’no-teoreticeskie osnovy avtomatizirovannyh sistem deformacionnogo monitoringa s ispol’zovaniem volokonno - opticeskih elementov // Vestnik Permskogo naucnogo centra. - 2016. - No 4. - S. 91-95.
  8. Pan ’kov A.A. Mathematical model for diagnosing strains by an optical fiber sensor with a distributed Bragg grating according to the solution of a Fredholm integral equation // Mechanics of Composite Materials. - 2018. - No 4. - P. 513-522.
  9. Pan’kov A.A. P’ezoelektroluminescentnyj optovolokonnyj datcik dla diagnostiki naprazennogo sostoania i defektoskopii kompozitov // Mehanika kompozitnyh materialov. - 2017. - T. 53. - No 2. - S. 325-344.
  10. Pan ’kov A.A. Piezoelectroluminescent optical fiber sensor for diagnostics of the stress state and defectoscopy of composites // Mechanics of Composite Materials. - 2017. - Vol. 53. - No 2. - P. 229-242 (Web of Science).
  11. Pan’kov A.A. Matematiceskoe modelirovanie p’ezoelektroluminescentnogo effekta i diagnostika raspredelenia davlenia po dline optovolokonnogo datcika // Vestnik PNIPU. Mehanika. - 2016. - No4. - S. 259-272 (Scopus).
  12. Pan’kov A.A. Maksvell-vagnerovskaa relaksacia elektriceskih polej v p’ezoelektroluminescentnom optovolokonnom datcike vibrodavlenia // Zurnal radioelektroniki: elektronnyj zurnal. - 2017. - No 11; http://jre.cplire.ru/jre/nov17/6/text.pdf.
  13. Pan’kov A.A. Matematiceskaa model’ impul’snogo skanirovania davlenia po dline p’ezoelektroluminescentnogo optovolokonnogo datcika // Vestnik PNIPU. Mehanika. - 2018. - No 1. - S. 73-82 (Scopus).
  14. Pan’kov A.A. P’ezoelektroluminescentnyj optovolokonnyj datcik dla diagnostiki ob"emnogo naprazennogo sostoania v kompozitnyh konstrukciah // Mehanika kompozitnyh materialov. - 2018. - T. 54. - No 2. - S. 233-248.
  15. Pan ’kov A.A. A piezoelectroluminescent fiber-optical sensor for diagnostics of the 3D stress state in composite structures // Mechanics of Composite Materials. - 2018. - Vol. 54. - No 2. - P. 155-164 (Web of Science).
  16. Pan’kov A.A. Rezonansnaa diagnostika raspredelenia temperatury p’ezoelektroluminescentnym optovolokonnym datcikom po reseniu integral’nogo uravnenia Fredgol’ma // Vestnik PNIPU. Mehanika. - 2018. - No 2. - S. 72-82 (Scopus).
  17. Pan’kov A.A. Rezonansnyj p’ezoelektroluminescentnyj optovolokonnyj datcik temperaturnogo pola v kompozitnyh konstrukciah // Mehanika kompozitnyh materialov. - 2019. - Vol. 55. - No 3. - P. 1-16.
  18. Pan ’kov A.A. Resonant piezoelectroluminescent fibre-optical sensor of the temperature field in composite designs // Mechanics of Composite Materials. - 2019. - Vol. 55. - No 3. - P. 1-16 (Web of Science).
  19. Pan ’kov A.A. Piezoelectroluminescent fiber-optic sensors for temperature and deformation fields // Sensors and Actuators A: Physical. - 2019. - Vol. 288. - P. 171-176 (Web of Science).
  20. Pan’kov A.A. P’ezoelektroluminescentnyj optovolokonnyj datcik diagnostirovania deformacionnyh polej v kompozitnyh konstrukciah / Tez. dokladov VII Vseros. nauc. konf. s mezdunar. ucastiem <>. - M:, 2017. - S. 143-145.
  21. Pan’kov A.A., Sobej M.M. Optovolokonnye datciki diagnostirovania kompozitnyh konstrukcij / Tez. dokladov XVIII Vseros. nauc.-tehnic. konf. <>, - Perm’, 2017. - S. 201-204.
  22. Pan’kov A.A., Pisarev P.V. Cislennyj rascet v ANSYS informativnyh i upravlausih peredatocnyh koefficientov p’ezoelektroluminescentnogo optovolokonnogo datcika / Tez. dokladov XVIII Vseros. nauc.-tehnic. konf. <>. - Perm’, 2017. - S. 198-201.
  23. Pan’kov A.A., Pisarev P.V. Cislennaa model’ v ANSYS poverhnostnogo p’ezoelektroluminescentnogo optovolokonnogo datcika membrannyh i momentnyh deformacij plastin / Tez. dokladov Vseros. nauc.-tehnic. konf. <>. - Perm’, 2018. - C. 393-395.
  24. Pan’kov A.A., Sobej M.M.Cislennaa model’ osesimmetricnoj stacionarnoj zadaci elektrouprugosti p’ezoelektroluminescentnogo optovolokonnogo datcika vibrodavlenia / Tez. dokladov Vseros. nauc.-tehnic. konf. <>, - Perm’, 2018. - C. 395-397.
  25. Pan’kov A.A. Patent RF No 2630537 ot 11.09.2017.
  26. Pan’kov A.A. Patent RF No 2643692 ot 05.02.2018.
  27. Pan’kov A.A. Patent RF No 2664684 ot 21.08.2018.
  28. Pan’kov A.A, Anoskin A.N. Patent RF No 2670220 ot 19.10.2018.
  29. Pan’kov A.A. Patent RF No 2684001 ot 03.04.2019.
  30. Pan’kov A.A. Patent RF No 2690416 ot 03.06.2019.
  31. Pan’kov A.A. Patent RF No 2690732 ot 05.06.2019.
  32. Pan’kov A.A. Zaavka na izobretenie RF No 2018145674 ot 21.12.2018 g.

Published

2019-10-14

Issue

Section

Research: theory and experiment

How to Cite

Pankov, A. ., Pisarev, P. ., & Shobey, M. . (2019). Development of piezoelectroluminescent and magnetostriction detectoscopy methods of aviation polymer composition materials with diagnostic piezoactive particles for location and of defects visualization. Perm Federal Research Centre Journal, 3, 78-85. https://doi.org/10.7242/2658-705X/2019.3.8