New bacteria-destructors of phthalates from the area of the Verkhnekamskoye salt deposit: molecular and biological characteristics and biotechnological potential

Authors

  • E.G. Plotnikova Institute of Ecology and Genetics of Microorganisms UB RAS
  • O.V. Yastrebova Institute of Ecology and Genetics of Microorganisms UB RAS
  • E.S. Korsakova Institute of Ecology and Genetics of Microorganisms UB RAS
  • A.A. Pyankova Institute of Ecology and Genetics of Microorganisms UB RAS
  • A.O. Voronina Institute of Ecology and Genetics of Microorganisms UB RAS

DOI:

https://doi.org/10.7242/2658-705X/2019.3.6

Keywords:

aerobic bacteria, ortho-phthalic acid, dibutyl phthalate, diethyl phthalate, destruction, sodium chloride

Abstract

The study aims to solve the urgent problem of purification of environmental objects from persistent organic pollutants, in particular phthalates as one of the most representative groups. In the course of the research, sampling and chemical analysis of 12 samples of contaminated / saline soils and potash production wastes (Berezniki, Perm Region) was carried out. 55 strains-destructors of ortho-phthalic acid were isolated from the enrichment cultures (EC), derived from these samples. Based on the analysis of 16S rRNA gene fragment, isolated strains have been identified as members of the genera Arthrobacter, Bacillus, Erythrobacter, Rhodococcus, Idiomarina, Martelella, Marinobacter, Oceanisphaera, Halomonas, Alcanivorax, Stappia and Pseudomonas. 20 strains capable of growth on ortho-PA were selected from the working collection of microorganisms (Laboratory of Molecular Microbiology and Biotechnology, Institute of Ecology and Genetics of Microorganisms, UB RAS). It was established that the isolated and selected strains-destructors of ortho-PA are capable to utilize a number of mono- and polyaromatic hydrocarbons, as well as to grow on media with an increased concentration of NaCl (up to 100%). Eight strains of the genera Halomonas, Pseudomonas, Oceanisphaera, Dietzia, Rhodococcus, Martelella were capable of using phthalic acid esters - dibutyl phthalate (DBP) and diethyl phthalate (DEP) as a substrate. Strains utilized 90-98% DBP and 49-80% DEP (500 mg/l) without salt in the culture medium and in the presence of 50 g/l NaCl. As a result of research, active strains-destructors of phthalates were identified adapted to growth under conditions of increased salinization of the environment, promising for the development of methods for bioremediation of technologically contaminated soils.

Supporting Agencies
Исследование выполнено при финансовой поддержке гранта РФФИ и Министерства образования и науки Пермского края в рамках научного проекта № 16-44-590968 р_а «Новые бактерии-деструкторы фталатов из района солеразработок Верхнекамского месторождения: молекулярно-биологическая характеристика и биотехнологический потенциал».

Author Biographies

  • E.G. Plotnikova, Institute of Ecology and Genetics of Microorganisms UB RAS
    доктор биологических наук, ведущий научный сотрудник лаборатории молекулярной микробиологии и биотехнологии, Институт экологии и генетики микроорганизмов УрО РАН РАН - филиал Пермского федерального исследовательского центра УрО РАН (ИЭГМ УрО РАН)
  • O.V. Yastrebova, Institute of Ecology and Genetics of Microorganisms UB RAS
    кандидат биологических наук, научный сотрудник лаборатории молекулярной микробиологии и биотехнологии, ИЭГМ УрО РАН
  • E.S. Korsakova, Institute of Ecology and Genetics of Microorganisms UB RAS
    кандидат биологических наук, научный сотрудник лаборатории молекулярной микробиологии и биотехнологии, ИЭГМ УрО РАН
  • A.A. Pyankova, Institute of Ecology and Genetics of Microorganisms UB RAS
    инженер 1-й категории лаборатории молекулярной микробиологии и биотехнологии, ИЭГМ УрО РАН
  • A.O. Voronina, Institute of Ecology and Genetics of Microorganisms UB RAS
    инженер лаборатории молекулярной микробиологии и биотехнологии, ИЭГМ УрО РАН

References

  1. Barstejn R.S. Kirilovic V.I., Nosovskij U.E. Plastifikatory dla polimerov - M.: Himia, 1982. - 200 s.
  2. Kasner D. Zizn’ mikrobov v ekstremal’nyh usloviah - M.: - Mir, 1981. - 365 s.
  3. Praktikum po agrohimii: uceb. posobie / pod red. V.G. Mineeva. - M.: MGU, 2001. - 689 s.
  4. Rozanova E.P., Nazina T.N. Uglevodorodokislausie bakterii i ih aktivnost’ v neftanyh plastah // Mikrobiologia. - 1982. - 51. - C. 324-348.
  5. Iwaki H., Nishimura A., Hasegawa Y. Isolation and characterization of marine bacteria capable of utilizing phthalate // World J. Microbiol. Biotechnol. - 2012. - Vol. 28. - P. 1321-1325.
  6. Jin D., LiangR.X., Dai Q.-Y., ZhangR.Y. Biodegradation of di-n-butyl phthalate by Rhodococcus sp. JDC-and molecular detection of 3,4-phthalate dioxygenase gene // J. Microbiol. Biotechnol. - 2010. - Vol. 20. - No 10. - P. 1440-1445.
  7. Jin D., KongX., Li Y., Bingjian C., Zhihui B., Zhuang H. Biodegradation of di-n-butyl phthalate by a newly isolated halotolerant Sphingobium sp. // Int. J. Mol. Sci. - 2013. - Vol. 14. - P. 24046-24054.
  8. Jin D., Kong X., Li Y., Bai Z., Zhuang G., Zhuang X., Deng Y. Biodegradation of di-n-butyl phthalate by Achromobacter sp. isolated from rural domestic wastewater // Int. J. Environ. Res. Public Health. - 2015. - Vol. 12. - P. 13510-13522.
  9. Lane D.J., Stackebrandt E., Goodfellow M. 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics / ed. D.J. Lane, - New York.: John Wiley and Sons, 1991. - P. 115-175.
  10. Liang D.W., Zhang T., Fang H. Phthalates biodegradation in the environment // Appl. Microbiol. Biotechnol. - 2008. - Vol. 80. - P. 183-198.
  11. Monzon G.C., Nisenbaum M., Seitz M.K.H., Murialdo S.E. // Current Microbiology. - 2018. - Vol. 75. - P. 1108-1118.
  12. Muyzer G., de Waal E.C., Uitterlinden A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA // Appl. Environ. Microbiol. - 1993. - Vol. 59. - P. 695-700.
  13. Prasad B., Suresh S. Biodegradation of Dimethyl Phthalate, Diethyl Phthalate, Dibutyl Phthalate and Their Mixture by Variovorax Sp. // Int. J. Environ. Sci. Develop. - 2012. - Vol. 3. - No 3. - P. 283-288.
  14. Stanislauskiene R., Rudenkov M., Karvelis L., Gasparaviciute R., Meskiene R., Casaite V., Meskys R. Analysis of phthalate degradation operon from Arthrobacter sp. 68B // Biologija. - 2011. - Vol. - 57. - No 3. - P. 45-54.
  15. Stingley R. L., Khan A. A., Cerniglia C. E. Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1 // Biochem. Biophys. Res. Commun. - 2004. - Vol. 322. - P. 133-146.
  16. Tiirola M.A., Mannisto M.K., Puhakka J.A., Kulomaa M.S. Isolation and characterization of Novosphingobium sp. Strain MT1, a dominant polychlorophenol-dagrading strain in a groundwater bioremediation system // Appl. Environ. Microbiol. - 2002. - Vol. 68. - P. 173-180.
  17. Vamsee-Krishna S., Mohan Y., Phale P. Biodegradation of phthalate isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4. // Appl. Microbiol. Biotechnol. - 2006. - Vol. 72. - P. 1263-1269.
  18. Wen Z.D., Gao D. W., Wu W.M. Biodegradation and kinetic analysis of phthalates by an Arthrobacter strain isolated from constructed wetland soil // Appl. Microbiol. Biotechnol. - 2014. - V. 98. - P. 4683-4690.

Published

2019-10-14

Issue

Section

Research: theory and experiment

How to Cite

Plotnikova, E. ., Yastrebova, O. ., Korsakova, E. ., Pyankova, A. ., & Voronina, A. . (2019). New bacteria-destructors of phthalates from the area of the Verkhnekamskoye salt deposit: molecular and biological characteristics and biotechnological potential. Perm Federal Research Centre Journal, 3, 61-69. https://doi.org/10.7242/2658-705X/2019.3.6