The adaptation of the hydrostatic levelling system to the operating conditions at real structures

Authors

  • V.V. Yepin Institute of Continuous Media Mechanics UB RAS
  • S.V. Lekomtsev Institute of Continuous Media Mechanics UB RAS
  • R.V. Tsvetkov Institute of Continuous Media Mechanics UB RAS
  • A.P. Shestakov Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/2658-705X/2019.3.4

Keywords:

deformation monitoring, liquid level, hydrostatic level, mathematical modeling, experiment, heat and mass transfer, non-freezing liquid

Abstract

The hydrostatic leveling method as part of deformation monitoring systems is an accurate tool for measuring vertical displacements. However, the operating conditions of the monitoring systems impose restrictions on the use of the method and reliability of its results. The article deals with the cases of practice in which there are errors in liquid level under the influence of the environment. The fundamental engineering problem of this study is the adaptation of the hydrostatic leveling method to the systems for deformation monitoring of real buildings and structures. To solve this problem, a number of models have been developed to describe the movement of liquid at hydrostatic levels, and their experimental verification has been performed. The simulation allowed to evaluate changes in the readings of the hydrostatic level depending on the external action (changes in air pressure, vibration, temperature). The results of the numerical solution to the problem of heat and mass transfer in the «hose-mixer» system have been used to estimate the possibility of equalizing the temperature of the liquid at a hydrostatic level by its stirring. Field experiments were conducted to study the forced liquid stirring in a hydrostatic leveling system, which allow marked reduction of the temperature error. Based on the results of experimental studies, the selection of liquids for hydro-leveling systems operating in the negative temperature range has been carried out. The knowledge obtained from the conducted studies can make up framework for designing hydrostatic leveling systems adapted for the deformation monitoring of complex structures.

Supporting Agencies
Работа подготовлена при финансовой поддержке гранта РФФИ №16-48-590025 «Адаптация метода гидростатического нивелирования для систем деформационного мониторинга».

Author Biographies

  • V.V. Yepin, Institute of Continuous Media Mechanics UB RAS
    младший научный сотрудник лаборатории механики функциональных материалов Институт механики сплошных сред УрО РАН - филиал Пермского федерального исследовательского центра УрО РАН (ИМСС УрО РАН)
  • S.V. Lekomtsev, Institute of Continuous Media Mechanics UB RAS
    кандидат физико-математических наук, и.о. заведующий лабораторией механики функциональных материалов ИМСС УрО РАН
  • R.V. Tsvetkov, Institute of Continuous Media Mechanics UB RAS
    кандидат технических наук, научный сотрудник лаборатории интеллектуального мониторинга ИМСС УрО РАН
  • A.P. Shestakov, Institute of Continuous Media Mechanics UB RAS
    младший научный сотрудник лаборатории интеллектуального мониторинга ИМСС УрО РАН

References

  1. Vasutinskij I.U. Gidronivelirovanie // - M.: Nedra, 1983. - 124 s.
  2. Epin V.V., Cvetkov R.V. Issledovanie neravnomernogo vysyhania nekotoryh vodnyh rastvorov dla sistem gidrostaticeskogo nivelirovania// Naucno-tehniceskij vestnik Povolz’a. - 2018. - No 9. - S. 70-72.
  3. Zukov B.N. Vlianie temperaturnyh faktorov na tocnost’ izmerenij prevysenij gidrostaticeskimi priborami i sistemami // Vestnik Sibirskoj gosudarstvennoj geodeziceskoj akademii. - 1999. - No 4. - S. 42-47.
  4. Lekomcev S.V., Cvetkov R.V. Ocenka vozmoznosti vyravnivania temperatury zidkosti v gidronivelire putem peremesivania // Vycislitel’naa mehanika splosnyh sred. - 2018.- T. 11. - No 2.- S. 202-213.
  5. Manukin A.B., Kazanceva O.S., Behterev S.V., Matunin V.P., Kalinnikov I.I. Dlinnobazisnyj gidrostaticeskij nivelir // Sejsmiceskie pribory. - 2013. - T. 49. - No 4. - S.26-34.
  6. Cvetkov R.V., Epin V.V., Lekomcev S.V., Sestakov A.P. Issledovanie dvizenia zidkosti v mnogosegmentnom gidronivelire // Naucno-tehniceskij vestnik Povolz’a. - 2016. - No 6. - S.92-94.
  7. Cvetkov R.V., Epin V.V. Eksperimental’noe issledovanie perehodnyh processov v mnogosegmentnom gidronivelire // Naucno-tehniceskij vestnik Povolz’a. - 2017. - No5. - S. 109-111.
  8. D’Oreye N., Zurn W. Very high resolution long-baseline water-tube tiltmeter to record small signals from Earth free oscillations up to secular tilts // Rev. Sci. Instrum. - 2005. -Vol. 76 - 024501.
  9. Hirt C. W., Nichols B.D. Volume of fluid (VOF) method for the dynamics of free boundaries // Journal of Computational Physics. - 1981. - Vol. 39 (1). - P. 201-225.
  10. Pellissier P.F. Hydrostatic Leveling Systems // IEEE Transactions. - 1965. - Vol. 12. - No 3. - P. 19-20.
  11. Shardakov I.N., Shestakov A.P., Tsvetkov R.V., Yepin V.V. The hydrostatic level method for continuous monitoring of building foundations // Solid State Phenomena. - 2016. - Vol. 243. - P. 105-111.
  12. Singatulin S., Volk J., Shiltsev V., Chupyra A., Medvedko A., Kondaurov M. High precision double tubed hydrostatic leveling system for accelerator alignment application // Proceedings of 9th IWAAA06. - USA: Menlo Park, 2006. - FR005.
  13. Tsvetkov R.V., Yepin V.V., Shestakov A.P. Numerical estimation of various influence factors on a multipoint hydrostatic leveling system // IOP Conf. Ser. Mater. Sci. Eng. - 2017. - Vol. 208. - 012046.
  14. Volk J. [et al.] Hydrostatic level sensors as high precision ground motion instrumentation for Tevatron and other energy frontier accelerators // J. Instrum. - 2012. - Vol. 7. - P01004.
  15. Yepin V.V., Tsvetkov R.V., Shardakov I.N., Shestakov A.P. Estimation of hydrostatic level parameters for measuring vertical displacement fields of structures on the test stand // AIP Conference Proceedings. - 2018. - Vol.2053. - 040104.
  16. Yin Z.Z. Application of hydrostatic leveling system in metro monitoring for construction deep excavation above shield tunnel // Appl. Mech. Mater. - 2013. - Vols. 333-335. - P. 1509-1513.
  17. Zhang C., Fukami K., Matsui S. Primary hydrokinetics study and experiment on the hydrostatic leveling system // Proceedings of the 7th Int. Workshop on Accelerator Alignment. - Japan: Spring-8, 2002. - P. 297-307.

Published

2019-10-14

Issue

Section

Research: theory and experiment

How to Cite

Yepin, V. ., Lekomtsev, S. ., Tsvetkov, R. ., & Shestakov, A. . (2019). The adaptation of the hydrostatic levelling system to the operating conditions at real structures. Perm Federal Research Centre Journal, 3, 41-48. https://doi.org/10.7242/2658-705X/2019.3.4