Complex of nonivasive experimental methods for the microcirculatory system monitoring

Authors

  • I.A. Mizeva Institute of Continuous Media Mechanics UB RAS
  • D.S. Goldobin Institute of Continuous Media Mechanics UB RAS
  • D.V. Airikh Perm State National Research University

DOI:

Keywords:

human blood microcirculation, laser Doppler flowmetry, wavelet analysis, high resolution skin thermometry

Abstract

The paper presents the results of an experimental study of the interrelation of measurable parameters which characterize the functional state of the blood microcirculation system. In particular, scale-by-scale correlation of signals, obtained by laser Doppler flowmetry (LDF) and photopletizmography (PPG) is found, which means that spectral decomposition of PPG signals, as well as LDF ones can be used for the detection of microvascular abnormality. The interconnection of optical signals and skin thermometry both at rest and during a loading test is studied. It is shown that the source of temperature disturbances on the surface of the skin is, apparently, blood vessels, lying at a depth of approximately 2 mm. The synchronization of blood flow oscillations of the forearm skin at a distance of 3 cm is studied. It is shown that oscillations with a frequency of 0.1 Hz have high synchronization at rest, and under local heating which causes a local vasodilation reaction, the synchronization decreases to a statistically insignificant level.

Supporting Agencies
Работа выполнена при финансовой поддержке проекта РФФИ-Урал №14-01-96030.

Author Biographies

  • I.A. Mizeva, Institute of Continuous Media Mechanics UB RAS
    кандидат физико-математических наук, научный сотрудник лаборатории физической гидродинамики
  • D.S. Goldobin, Institute of Continuous Media Mechanics UB RAS
    кандидат физико-математических наук, старший научный сотрудник группы динамики геологических систем
  • D.V. Airikh, Perm State National Research University
    магистр кафедры теоретической физики

References

  1. Frick P., Mizeva I., Podtaev S. Skin temperature variations as a tracer of microvessel tone // Biomedical Signal Processing and Control. - 2015. - Vol. 21. - P. 1-7.
  2. Tang Y.-L., He Y., Shao H.-W., Mizeva I. Skin temperature oscillation model for assessing vasomotion of microcirculation // Acta Mechanica Sinica. - 2015. - Vol. 31. - No 1. - P. 132-138.
  3. Sorelli M., Bocchi L., Stoyneva Z., Mizeva I. Location-dependent microvascular response to thermal stimulation // Program and abstracts of ESGCO biological oscillations. - Lancaster, April 10-14, 2016. - R. 176-177.
  4. Mizeva I., Airikh D. Reaction of blood flow in microvessels on the local heating in patients with DM1 // Program and abstracts of ESGCO biological oscillations. - Lancaster, April 10-14, 2016. - R. 285-286.

Published

2017-11-16

Issue

Section

Research: theory and experiment

How to Cite

Mizeva, I. ., Goldobin, D. ., & Airikh, D. . (2017). Complex of nonivasive experimental methods for the microcirculatory system monitoring. Perm Federal Research Centre Journal, 3, 42-46. https://journal.permsc.ru/index.php/pscj/article/view/PSCJ2017n3p6