Theoretical study of mechanical properties of nanostrands in polymers

Authors

  • O.K. Garishin Institute of Continuous Media Mechanics UB RAS
  • R.I. Izumov Institute of Continuous Media Mechanics UB RAS
  • S.N. Lebedev Institute of Continuous Media Mechanics UB RAS

DOI:

Keywords:

atomic-force microscopy, nanoindentation, polymer, finite elastic deformation

Abstract

Research on computer modeling of the interaction of an atomic force microscopy (AFM) probe with a polymeric nanostrand in the form of a nonlinear elastic cylinder with cantilevered ends and free lateral surface was carried out in the framework of the project. The dimensions of the nanostrand corresponded to the actual values observed in the experiments. Dependencies between the force on the probe, probe indentation depth and nanostrand deflection at different contact points (along the length and in the cross-section) were built. It is shown that the deflection of the strand can be much greater than the depth of the indentation of the AFM probe into the surface. What’s more, the nanostrand in the process of contact can shift not only down, but also sideways. Therefore, standard methods of decoding AFM scan data (which are based on the solution of the problem of contact sphere and flat half-space and the possibility of displacement of the surface as a rigid body is not taken into account) in these cases cannot be used - they give too much error. Ways to solve this problem are given.

Supporting Agencies
Работа выполнена при финансовой поддержке РФФИ и Министерства образования и науки Пермского края (грант № 14-01-96002).

Author Biographies

  • O.K. Garishin, Institute of Continuous Media Mechanics UB RAS
    доктор физико-математических наук, старший научный сотрудник лаборатории микромеханики структурно-неоднородных сред
  • R.I. Izumov, Institute of Continuous Media Mechanics UB RAS
    младший научный сотрудник лаборатории микромеханики структурно- неоднородных сред
  • S.N. Lebedev, Institute of Continuous Media Mechanics UB RAS
    ведущий инженер лаборатории микромеханики структурно- неоднородных сред

References

  1. Cvalun S.N. Polimernye nanokompozity // Priroda. - 2000. - No 7. - S. 22-30.
  2. Binnig G., Quate C.F., Gerber C. Atomic force microscope // Surface studies by scanning tunneling microscopy // Phys. Rev. Lett. - 1986. - Vol. 56. - No 9. - P. 930-933.
  3. Golovin U.I. Vvedenie v nanotehnologiu. - M.: Masinostroenie, 2003. - 112 s.
  4. Giessib F.J. AFM’s path to atomic resolution // Materials Today. - 2005. - Vol. 8. - No 5. - P. 32-41.
  5. Bhushan B. Nanotribology and nanomechanics. - Springer, 2005. - 1148 p.
  6. Schuh C.A. Nanoindentation studies of materials // Materials Today. - 2006. - Vol. 9. - No 5. - P. 32-40.
  7. Bhushan B. Handbook of micro-mano-tribology. - Springer, 1999. - 433 p.
  8. Vanlandingham M.R., McKnicht S.H., Palmese G.R., Eduljee R.F., Gillepie J.W., McCulough Jr.R.L. Relating elastic modulus to indentation response using atomic force microscopy // J. of Materials Science Letters. - 1997. - Vol. 16. - P. 117-119.
  9. Dao M., Chollacoop N., Van Vliet K.J., Venkatesh T.A., Suresh S. Computational modeling of the forward and reverse problems in instrumented indentation // Acta Mater. - 2001. - Vol. 49. - No 19. - P. 3899-3918.
  10. Fischer-Cripps A.C. Nanoindentation and indentation measurements // Mater. Sci. Eng. - 2004. - Vol. 44. - P. 91-102.
  11. Carlsson S., Larsson P.-L. On the determination of residual stress and strain fields by sharp indentation testing. Part I: theoretical and numerical analysis // Acta Mater. - 2001. - Vol. 49. - No 12. - P. 2179-2191.
  12. Fischer-Cripps A.C. Nanoindentation. - Springer, 2002. - 217 p.
  13. Mironov V.L. Osnovy skaniruusej zondovoj mikroskopii. - N. Novgorod: izd-vo Instituta fiziki mikrostruktur RAN, 2004. - 115 s.
  14. Garisin O.K. Modelirovanie kontaktnogo rezima raboty atomno-silovogo mikroskopa s ucetom nemehaniceskih sil vzaimodejstvia s poverhnost’u obrazca // Vycisl. meh. splos. sred. - 2012. - T. 5. - No 1. - S. 61-69.
  15. Morozov I.A., Garisin O.K., Volodin F.V., Kondurin A.V., Lebedev S.N. Eksperimental’noe i cislennoe modelirovanie elastomernyh kompozitov putem issledovania nanosloev poliizoprena na uglerodnoj poverhnosti // Mehanika kompozicionnyh materialov i konstrukcij. - 2008. - T. 14. - No 1. - S. 3-15.
  16. Uzegova N.I., Svistkov A.L., Garisin O.K. Modelirovanie kontakta zonda atomno-silovogo mikroskopa s zidkoj plenkoj // Kondensirovannye sredy i mezfaznye granicy. - 2014. - T. 16. - No 1. - C. 84-90.
  17. Morozov I.A., Garishin O.K., Shadrin V.V., Gerasin V.A., Guseva M.A. Atomic force microscopy of structural-mechanical properties of polyethylene reinforced by silicate needle-shaped filler // Advances in Materials Science and Engineering. - 2016. - Vol. 2016. - Article ID 8945978. - 8 p.
  18. Morozov I.A., Lauke B., Heinrich G. AFM investigation of structure and mechanical properties of crack zones in CB filled/unfilled vulcanizates // Kautschuk Gummi Kunststoffe. - 2013. - No 10. - P. 71-76.
  19. Derjaguin B.V., Muller V.M., Toporov Yu.P. Effect of contact deformations on the adhesion of particles // J. Colloid. Interface Sci. - 1975. - Vol. 53. - No 2. - P. 314-326.
  20. Deragin B.V., Curaev N.V., Muller V.M. Poverhnostnye sily. - M.: Nauka, 1985. - 398 s.
  21. Svistkov A.L., Lauke B. Differencial’nye opredelausie uravnenia neszimaemyh sred pri konecnyh deformaciah // Prikladnaa mehanika i tehniceskaa fizika. - 2009. - T. 50. - S. 158-170.

Published

2017-11-16

Issue

Section

Research: theory and experiment

How to Cite

Garishin, O. ., Izumov, R. ., & Lebedev, S. . (2017). Theoretical study of mechanical properties of nanostrands in polymers. Perm Federal Research Centre Journal, 3, 8-14. https://journal.permsc.ru/index.php/pscj/article/view/PSCJ2017n3p1