MULTILEVEL MODEL FOR THE DESCRIPTION OF SOLID-STATE PHASE TRANSITIONS IN MULTICOMPONENT ALLOYS

Authors

  • P.V. Trusov Perm National Research Polytechnic University
  • P.S. Volegov Perm National Research Polytechnic University
  • I.L. Isupova Scientific Research Institute of Polymeric Material
  • N.S. Kondratev Research Institute of Mechanics Lobachevsky State University of Nizhni Novgorod
  • E.S. Makarevich Perm National Research Polytechnic University
  • N.D. Nyashina Perm National Research Polytechnic University
  • T.V. Ostanina Perm National Research Polytechnic University
  • E.R. Sharifullina Perm National Research Polytechnic University
  • A.I. Shveikin Perm National Research Polytechnic University
  • A.Yu. Yants Perm National Research Polytechnic University

DOI:

Keywords:

mathematical model, physical plasticity theory, multilevel model, thermo mechanical treatment, solid-state phase transformation

Abstract

A three-level model of steel inelastic deformation with allowance for phase transformations under thermomechanical impact has been proposed. Three scale levels: macrolevel I (construction level), macrolevel II (level of representative macrovolume), mesolevel (crystallite level - separate grain or subgrain) have been included in the consideration. The levels are connected by means of internal variables that describe deformation and phase transformations at a deeper level. A computing algorithm in terms of the statistical approach for representative volume of meso- and macrolevel II on the basis of the formulated mathematical statement has been developed and realized. A parameter identification unit of the hardening law and adequacy check for computing results has been developed. Computing experiments for representative volume of macrolevel II under deformation by monoaxial stretching, a simple shift and complex loading have been conducted. The dependence of forming martensite on deformation intensity and deformation curves has been received for the specified loading types. The obtained calculated dependences are in good quantitative agreement with the known experimental data from the literature. The proposed model has been applied to describe the behaviour of a titanic alloy under high- temperature plastic deformation with dynamic recovery and recrystallization. Such processes of mechanical treatment as draft, constrained draft, simple shear have been considered. It is shown that the results of modelling, including the characteristics of the evolving structure, correspond to the experimental data.

Supporting Agencies
Работа выполнена при финансовой поддержке РФФИ и Правительства Пермского края (грант № 13-01-96006 р_Урал_а)

Author Biographies

  • P.V. Trusov, Perm National Research Polytechnic University
    доктор физико-математических наук, заведующий кафедрой математического моделирования систем и процессов, Пермский национальный исследовательский политехнический университет (ПНИПУ)
  • P.S. Volegov, Perm National Research Polytechnic University
    кандидат физико-математических наук, доцент кафедры математического моделирования систем и процессов, ПНИПУ
  • I.L. Isupova, Scientific Research Institute of Polymeric Material
    кандидат физико-математических наук, инженер I категории, АО «Научно-исследовательский институт полимерных материалов»
  • N.S. Kondratev, Research Institute of Mechanics Lobachevsky State University of Nizhni Novgorod
    младший научный сотрудник, Научно-исследовательский институт механики Национального исследовательского Нижегородского государственного университета им. Н.И. Лобачевского; старший научный сотрудник, ПНИПУ
  • E.S. Makarevich, Perm National Research Polytechnic University
    кандидат физико-математических наук, доцент кафедры математического моделирования систем и процессов, ПНИПУ
  • N.D. Nyashina, Perm National Research Polytechnic University
    кандидат физико-математических наук, доцент кафедры математического моделирования систем и процессов, ПНИПУ
  • T.V. Ostanina, Perm National Research Polytechnic University
    кандидат физико-математических наук, доцент кафедры математического моделирования систем и процессов, ПНИПУ
  • E.R. Sharifullina, Perm National Research Polytechnic University
    аспирант кафедры математического моделирования систем и процессов, ПНИПУ
  • A.I. Shveikin, Perm National Research Polytechnic University
    кандидат физико-математических наук, старший научный сотрудник кафедры математического моделирования систем и процессов, ПНИПУ
  • A.Yu. Yants, Perm National Research Polytechnic University
    кандидат физико-математических наук, доцент кафедры математического моделирования систем и процессов, ПНИПУ

References

  1. Trusov P.V., Shveykin A.I. Multilevel crystal plasticity models of single- and polycrystals. Statistical models // Physical Mesomechanics. - 2013. - Vol. 16. - No 1. - P. 23-33. DOI
  2. Isupova I.L., Trusov P.V. Matematiceskoe modelirovanie fazovyh prevrasenij v stalah pri termomehaniceskoj nagruzke // Vestnik Permskogo nacional’nogo issledovatel’skogo politehniceskogo universiteta. Mehanika. - 2013. - No 3.- S. 126-156.
  3. Isupova I.L., Trusov P.V. Obzor matematiceskih modelej dla opisania fazovyh prevrasenij v stalah // Tam ze. - S. 157-192.
  4. Macuk K.V., Trusov P.V. Model’ dla opisania uprugovazkoplasticeskogo deformirovania GPU-kristallov: nesimmetricnye mery naprazenno-deformirovannogo sostoania, zakony uprocnenia // Vestnik Permskogo nacional’nogo issledovatel’skogo politeheniceskogo universiteta. - 2013. - No 4. - S. 75-105.
  5. Trusov P.V., Volegov P.S., Yants A.Yu. Two-scale models of polycrystals: macroscale motion decomposition // Physical Mesomechanics.- 2014. - Vol. 17. - No 2. - P. 116-122.
  6. Yanz A.Yu., Trusov P.V., Teplyakova L.A. Quasi-static loading single crystal specimen of crystal plasticity // Advanced Materials Research. - 2014. - Vol. 1040. - P. 571-575.
  7. Trusov P.V., Kondratev N.S. Crystal plasticity modeling of duplex steels at high temperatures // Advanced Materials Research. - 2014. - Vol. 1040. - P. 455-460.
  8. Volegov P.S., Trusov P.V., Shveykin A.I. Multilevel models of polycrystals using crystal plasticity: investigation of hardening laws influence on the macro effects of cyclic loading // J. of Physics: Conference Series. - 2014. - Vol. 490. - 012037. DOI
  9. Trusov P.V. O nesimmetricnyh merah naprazennogo i deformirovannogo sostoania i zakone Guka // Vestnik Permskogo nacional’nogo issledovatel’skogo politehniceskogo universiteta. Mehanika. - 2014. - No 2. - S. 220-237.
  10. Trusov P.V., Ceculina E.A. Preryvistaa tekucest’: fiziceskie mehanizmy, eksperimental’nye dannye, makrofenomenologiceskie modeli // Vestnik Permskogo nacional’nogo issledovatel’skogo politehniceskogo universiteta. Mehanika. - 2014. - No 3. - S. 186-232. DOI
  11. Nasina N.D., Trusov P.V. Modelirovanie martensitnyh prevrasenij v stalah: kinematika mezourovna // Vestnik Permskogo nacional’nogo issledovatel’skogo politehniceskogo universiteta. Mehanika. - 2014. - No 4. - S. 118-151. DOI
  12. Volegov P., Trusov P., Gribov D. Investigation of the features of polycrystals complex loading using a two- level crystal plasticity theory // IOP Conf. Series: Materials Science and Engineering. - 2015. - Vol. 71. - 012071. DOI
  13. Kondrat’ev N.S., Trusov P.V. Mnogourovnevye modeli plasticnosti mnogofaznyh polikristalliceskih materialov, osnovannye na fiziceskih teoriah plasticnosti i vazkoplasticnosti // Vestnik PNIPU. Mehanika. - 2015. - No 1. - S. 76-105. DOI
  14. Trusov P.V., Volegov P.S., Anc A.U. Dvuhurovnevye modeli polikristallov: o razlozenii dvizenia na makrourovne // Fiziceskaa mezomehanika. -2013. - T. 16. - No 5. - S. 17-23.
  15. Isupova I.L., Trusov P.V. Dvuhurovnevaa model’ dla opisania povedenia stalej pri termomehaniceskom nagruzenii s ucetom martensitnyh prevrasenij: algoritm realizacii modeli // Vycislitel’naa mehanika splosnyh sred. - 2013. - T. 8. - No 4. - S. 491-503.
  16. Trusov P.V., Volegov P.S., Anc A.U. Dvuhurovnevye modeli polikristallov: o nezavisimosti obraza nagruzenia predstavitel’nogo makroob"ema // Fiziceskaa mezomehanika.- 2013. - T. 16. - No 6. - S. 33-41.
  17. Trusov P.V., Volegov P.S., Anc A.U. Dvuhurovnevye modeli polikristallov: prilozenie k analizu sloznogo nagruzenia // Fiziceskaa mezomehanika.- 2013. - T. 16. - No 6. - S. 43-50.
  18. Trusov P.V., Kondrat’ev N.S. Dvuhurovnevaa model’ dla opisania neizotermiceskogo deformirovania dvuhfaznyh polikristallov // Vycislitel’naa mehanika splosnyh sred. - 2014. - T. 7. - No 2. - S. 181-199.
  19. Isupova I.L., Trusov P.V. Modelirovanie povedenia stalej s ucetom diffuzionnyh fazovyh prevrasenij // Naucno-tehniceskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politehniceskogo universiteta. - 2014. - No 1(190). - S. 191-197.
  20. Trusov P.V., Isupova I.L. Postroenie dvuhurovnevoj modeli dla opisania povedenia stalej pri termomehaniceskom nagruzenii v intervale martensitnyh prevrasenij // Fiziceskaa mezomehanika. - 2014. - T. 17. - No 2. - S. 5-17.
  21. Trusov P.V., Volegov P.S., Anc A.U. Dvuhurovnevye modeli polikristallov: prilozenie k ocenke spravedlivosti postulata izotropii Il’usina v slucae bol’sih gradientov peremesenij // Fiziceskaa mezomehanika. - 2015. - T. 18. - No 1. - S. 23-37.
  22. Trusov P.V., Anc A.U. O fiziceskom smysle negolonomnoj mery deformacii // Fiziceskaa mezomehanika. - 2015. - T. 18. - No 2. - S. 13-21.
  23. Volegov P.S., Gribov D.S., Trusov P.V. Povrezdennost’ i razrusenie: obzor eksperimental’nyh rabot // Fiziceskaa mezomehanika. - 2015 - T. 18. - No 3. - S. 11-24.
  24. Volegov P.S., Gribov D.S., Trusov P.V. Povrezdennost’ i razrusenie: Klassiceskie kontinual’nye teorii // Fiziceskaa mezomehanika. - 2015. - T. 18. - No 4. - S. 68-87.
  25. Nasina N.D. Matematiceskaa model’ deformirovania stali pri martensitnyh perehodah // Prikladnaa matematika i voprosy upravlenia. - 2015. - No 1. - S. 36-46.

Published

2016-12-29

Issue

Section

Research: theory and experiment

How to Cite

Trusov, P. ., Volegov, P. ., Isupova, I. ., Kondratev, N. ., Makarevich, E. ., Nyashina, N. ., Ostanina, T. ., Sharifullina, E. ., Shveikin, A. ., & Yants, A. . (2016). MULTILEVEL MODEL FOR THE DESCRIPTION OF SOLID-STATE PHASE TRANSITIONS IN MULTICOMPONENT ALLOYS. Perm Federal Research Centre Journal, 4, 82-90. https://journal.permsc.ru/index.php/pscj/article/view/PSCJ2016n4p14