MATHEMATICAL MODELING OF DYNAMICS OF FORESTRY DEVELOPMENT IN PERM REGION

Authors

  • D.A. Bratsun Пермский государственный гуманитарно-педагогический университет
  • A.K. Kolesnikov Пермский государственный гуманитарно-педагогический университет
  • A.V. Lyushnin Пермский государственный гуманитарно-педагогический университет

DOI:

Keywords:

complex system, spatially distribution systems, automatic cells

Abstract

The processes of birth, growth and pattern formation of forest typical of Perm region are modelled. The model is built as a complex system, where each population is represented by individual trees competing for solar light. For each tree we calculated the integral year light energy penetrating through crowns of neighboring trees. Other factors taken into account are growth rate, seed dispersal and mortality. The parameter values used in the model were calibrated from the factual information received from Perm forests. On the one hand, this work has a fundamental aspect because the formation of dynamical macroscopic patterns in ecological systems attracts great interest of researchers. On the other hand, the proposed model can have many applications for more effective forest management.

Supporting Agencies
Работа выполнена при финансовой поддержке РФФИ (гранты № 07-01-97612-р_офи и 10-01-96036-р_урал_а).

Author Biographies

  • D.A. Bratsun, Пермский государственный гуманитарно-педагогический университет
    доктор физико-математических наук, заведующий кафедрой теоретической физики и компьютерного моделирования
  • A.K. Kolesnikov, Пермский государственный гуманитарно-педагогический университет
    кандидат физико-математических наук, ректор
  • A.V. Lyushnin, Пермский государственный гуманитарно-педагогический университет
    кандидат физико-математических наук, доцент кафедры теоретической физики и компьютерного моделирования

References

  1. Aptukov A.M., Bracun D.A. Modelirovanie gruppovoj dinamiki tolpy, panikuusej v ogranicennom prostranstve // Vestnik Permskogo un-ta. Mehanika. - 2009. - Vyp. 3(29). - C. 18-23.
  2. Belkovskaa T.P., Bezgodov A.G., Ovesnov S.A. Sosudistye rastenia Viserskogo zapovednika. - Perm’.: izd-vo PGU. - 2004. - 104 s.
  3. Bracun D.A. Effekt vozbuzdenia podkriticeskih kolebanij v stohasticeskih sistemah s zapazdyvaniem. C. I. Regulacia ekspressii genov // Komp’uternye issledovania i modelirovanie. - 2011. - T. 3. - No 4. - S. 431-438.
  4. Bracun D.A., Zaharov A.P. Modelirovanie prostranstvenno-vremennoj dinamiki cirkadiannyh ritmov Neurospora crassa // Komp’uternye issledovania i modelirovanie. - 2011. - T. 3. - No 2. - S. 191-213.
  5. Bracun D.A., Kolesnikov A.K., Lusnin A.V., Skaraba E.M. Modelirovanie prostranstvennovremennoj dinamiki lesnogo massiva // Vestn. Permskogo un-ta. Ser.: Matematika. Mehanika. Informatika. - 2009. - Vyp. 3(29). - S. 24-31.
  6. Bracun D.A., Lusnin A.V. Svidetel’stvo o gosudarstvennoj registracii programmy dla EVM No 2012612434 <>. Zaregistrirovano v Reestre programm dla EVM 6 marta 2012 g.
  7. Lesnoj fond Rossii. Spravocnik. - M.: izd-vo VNIIClesresurs, 1995. - 280 s.
  8. Murrej Dz. Matematiceskaa biologia. T. 1. Vvedenie. - Izevsk: izd-vo IKI-RHD, 2009. - 774 s.
  9. Oficial’nyj sajt Ministerstva prirodnyh resursov Permskogo kraa. URL: http://priroda.permkrai.ru/.
  10. Cabak E. Dla kogo speet les? Obzor LPK Permskogo kraa // LesPromInform, 2009. - No 8. - S. 73-76.
  11. Botkin D.B., Janak J.F., Wallis J.R. Some ecological consequences of computer model of forest growth // J. Ecology. - 1972. - Vol. 60. - P.101-116.
  12. Bratsun D., Volfson D., Hasty J., Tsimring L. Delay-induced stochastic oscillations in gene regulation // PNAS. - 2005. - Vol. 102. - No 41. - P. 14593-14598.
  13. Bratsun D.A., Lyushnin A.V., Dubova I.Yu., Krylova M.V. Computational modeling of collective behavior of panicked crowd escaping multi-floor branched building // Book of abstracts of European Conference on Complex Systems. - Brussels, Belgium, 2012. - P. 121.
  14. Greig-Smith P. Pattern in vegetation // J. Ecol. - 1979. - Vol. 67. - P. 755-779.
  15. Kershaw K.A. Pattern in Vegetation and Its Causality // Ecology. - 1963. - Vol. 44. - P. 377-388.
  16. Lefever R., Lejeune O. On the Origin of Tiger Bush // Bull. Math. Biol. - 1997. - Vol. 59. - P.263-294.
  17. Levin S.A. The problem of pattern and scale in ecology // Ecol. - 1992. - Vol. 73. - P. 1943-1967.
  18. Pacala S.W., Canham C.D., Silander J.A. Forest models defined by field measurements: 1 the design of a northeastern forest simulator // Can. J. For. Res. - 1993. - Vol. 23. - P. 1980-1988.
  19. Ponce V.M., Cunha C.N. Vegetated earth mounds in tropical savannas of Central Brazil: A synthesis // J. Biogeogr. - 1993. - Vol. 20. - P. 219-225.
  20. Valentin C., D’Herbes J.M., Poesen J. Soil and water components of banded vegetation patterns // Catena 37. - 1999. - P. 1-24.

Published

2014-01-15

Issue

Section

Research: theory and experiment

How to Cite

Bratsun, D. ., Kolesnikov, A. ., & Lyushnin, A. . (2014). MATHEMATICAL MODELING OF DYNAMICS OF FORESTRY DEVELOPMENT IN PERM REGION. Perm Federal Research Centre Journal, 3, 5-12. https://journal.permsc.ru/index.php/pscj/article/view/PSCJ2013n3p1