Problem on natural vibrations of electroviscoelastic bodies with external electric circuits and finite element relations for its implementation

Authors

  • Valeriy Pavlovich Matveenko Institute of Continuous Media Mechanics UB RAS
  • Dmitriy Aleksandrovich Oshmarin Institute of Continuous Media Mechanics UB RAS
  • Natalia Vitalievna Sevodina Institute of Continuous Media Mechanics UB RAS
  • Natalia Alekseevna Yurlova Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2016.9.4.40

Keywords:

natural vibrations, electroviscoeleasticity, piezoelectric elements, external electric circuits, finite element method

Abstract

In this paper the mathematical statement for solving of the problem of natural vibrations of piecewise homogeneous electro-viscoelastic bodies with a passive external circuit of different configurations is proposed. The results of the problem solution are complex natural vibration frequencies, which characterize the natural vibration frequencies of bodies and their damping rates. These characteristics can be efficiently used to analyze dynamic processes in smart systems, i.e. materials exhibiting a piezoelectric effect. Recently these systems have found many applications in different branches of science and industry. Their capability to control and govern the dynamic behavior of structures can be greatly expanded by connecting external circuits of different combinations of resistive, capacitive and inductive elements to piezoelectric elements. The search for the optimal parameters of smart-systems is based on the appropriate choice of piezoelectric element arrangements, electric circuit schemes and circuit elements. When considering problems with a large number of parameters, the modeling is one of the efficient approaches for finding the optimal solution. Application software packages currently available for solving natural vibration problems do not provide direct solution to the problem formulated here. Therefore, this study involves finite-element relations, including those for the original finite element representing an external circuit, which, taking into account the well-known types of finite elements for continuous media description, form the basis for constructing numerical algorithms. As an example, calculations of the complex natural vibration frequencies of a half cylinder with an attached piezoelectric element and an external series RL-circuit are performed.

Downloads

Download data is not yet available.

References

Hagood N.W., von Flotow A. Damping of structural vibrations with piezoelectric materials and passive electrical networks // J. Sound Vib. - 1991. - Vol. 146, no. 2. - P. 243-268. DOI
2. Kuo Shih-Yao. Stiffening effects on the natural frequencies of laminated beams with piezoelectric actuators // Journal of Aeronautics, Astronautics and Aviation, Series A. - 2010. - Vol. 42, no. 1. - P. 067-072.
3. Karnauhova T.V. O novom podhode k aktivnomu dempfirovaniu vynuzdennyh rezonansnyh izgibnyh kolebanij izotropnyh vazkouprugih plastin // Dop. NAN Ukraini. - 2009. - No 5. - C. 78-82.
4. Khani S., Tabandeh N., Ghomshei M.M. Natural frequency analysis of non-uniform smart beams with piezoelectric layers, using differential quadrature method // Compos. Part B-Eng. - 2014. - Vol. 58. - P. 303-311. DOI
5. Li M.M., Fang B., Cao D.Q, Huang W.H. Modeling and analysis of cantilever beam with active-passive hybrid piezoelectric network // Sci. China Technol. Sci. - 2013. - Vol. 56, no. 9. - P. 2326-2335. DOI
6. P., Caruso G., Maceri F. On the choice of the shunt circuit for single-mode vibration damping of piezoactuated structures // Mechanical Modelling and Computational Issues in Civil Engineering. - 2004. - Vol. 23. - P. 389-400. DOI
7. Donadon M.V., Almeida S.F.M., de Faria A.R. Stiffening effects on the natural frequencies of laminated plates with piezoelectric actuators // Compos. Part B-Eng. - 2002. - Vol. 33, no. 5. - P. 335-342. DOI
8. Krommer M., Pieber M., Vetyukov Yu. Modellierung, Simulation und Schwingungsreduktion dunner Schalen mit piezoelektrischen Wandlern // Elektrotech. Inftech. - 2015. - Vol. 132, no. 8. - P. 437-447. DOI
9. Thomas O., Deu J.-F., Ducarne J. Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite element formulation and electromechanical coupling coefficients // Int. J. Numer. Meth. Eng. - 2009. - Vol. 80, no. 2. - P. 235-268. DOI
10. Benjeddou A. Modal effective electromechanical coupling approximate evaluations and simplified analyses: numerical and experimental assessments // Acta Mech. - 2014. - Vol. 225, no. 10. - P. 2721-2742. DOI
11. Karlash V.L. Resonant electromechanical vibrations of piezoelectric shells of revolution (review) // Int. Appl. Mech. - 2008. - Vol. 44, no. 4. - P. 361-387. DOI
12. Senechal A., Thomas O., Deu J.-F., Jean P. Optimization of shunted piezoelectric patches for complex structure vibration reduction - Application to a turbojet fan blade // Proc. of IV European Congress on Computational Mechanics (ECCM 2010), Paris, France, May 16-21, 2010. - P.1-2.
13. Rocha T.L., Calcada M., Silva Y.A.R. Enhancement of low-frequency sound insulation using piezoelectric resonators // J. Braz. Soc. Mech. Sci. Eng. - 2013. - Vol. 35, no. 4. - P. 357-367. DOI
14. Bolkisev A.M., Efimova T.L., Sul’ga N.A. Kolebania p’ezokeramiceskogo pologo cilindra pri mehaniceskom nagruzenii // Prikladnaa mehanika. - 1985. - T. 21, No 9. - S. 109-112.
15. Bolkisev A.M., Sul’ga N.A. Vynuzdennye kolebania vazkouprugogo p’ezokeramiceskogo cilindra // Prikladnaa mehanika. - 1986. - T. 22, No 4. - S. 103-106.
16. Karnauhova T.V. Vlianie mehaniceskih granicnyh uslovij na aktivnoe dempfirovanie vynuzdennyh izgibnyh rezonansnyh kolebanij izotropnyh vazkouprugih pramougol’nyh plastin // Dop. NAN Ukraini. - 2009. - No 8. - S. 58-62.
17. Washizu K. Variational methods in elasticity and plasticity. - Oxford: Pergamon Press, 1982.
18. Parton V.Z., Kudravcev B.A. Elektromagnitouprugost’ p’ezoelektriceskih i elektroprovodnyh tel. - M.: Nauka, 1988. - 472 s.
19. Karnauhov V.G., Kiricok I.F. Elektrotermovazkouprugost’. - Kiev: Nauk. dumka, 1988. - 319 s.
20. Il’usin A.A., Pobedra B.E. Osnovy matematiceskoj teorii termovazkouprugosti. - M: Nauka, 1970. - 280 s.
21. Popov V.P. Osnovy teorii cepej: ucebnik dla vuzov spec. <>. - M.: Vyssaa skola, 1985. - 496 s.
22. Manaev E.I. Osnovy radioelektroniki. - M.: Radio i svaz’, 1985. - 504s.
23. Adamov A.A., Matveenko V.P., Trufanov N.A., Sardakov I.N. Metody prikladnoj vazkouprugosti. - Ekaterinburg: UrO RAN, 2003. - 411 s.
24. Matveenko V.P., Sevodin M.A., Sevodina N.V. Prilozenia metoda Mullera i principa argumenta k zadacam na sobstvennye znacenia v mehanike deformiruemogo tverdogo tela // Vycisl. meh. splos. sred. - 2014. - T. 7, No 3. - C. 331-336. DOI
25. Matveenko V.P., Kligman E.P., Urlov M.A., Urlova N.A. Modelirovanie i optimizacia dinamiceskih harakteristik smart-struktur s p’ezomaterialami // Fiz. mezomeh. - 2012. - T. 15, No 1. - C. 75-85. DOI

Published

2016-12-30

Issue

Section

Articles

How to Cite

Matveenko, V. P., Oshmarin, D. A., Sevodina, N. V., & Yurlova, N. A. (2016). Problem on natural vibrations of electroviscoelastic bodies with external electric circuits and finite element relations for its implementation. Computational Continuum Mechanics, 9(4), 476-485. https://doi.org/10.7242/1999-6691/2016.9.4.40