Boundary element formulation for 3D dynamic problems of anisotropic viscoelasticity and isotropic poroviscoelasticity
DOI:
https://doi.org/10.7242/1999-6691/2016.9.4.39Keywords:
3D boundary-value problems, boundary element method, poroviscoelasticity, anisotropic viscoelasticity, Laplace transform inversion, time-step method, Runge-Kutta schemeAbstract
The dynamic behavior of anisotropic viscoelastic and poroviscoelastic solids is considered. A poroviscoelastic formulation is based on the Biot model of fully saturated poroelastic media. The elastic-viscoelastic correspondence principle is applied to describe the viscoelastic properties of a porous material skeleton. The system of differential equations of the full Biot model in Laplace transforms and formulas for elastic modules are given. A solution to the original problem is constructed using Laplace transforms, and numerical inversion yields the solution in the time domain. The system of direct boundary integral equations is introduced, and the system of regularized boundary integral equations is considered. Discrete analogues are obtained through mixed boundary element discretizations. The collocation points of the boundary integral equation coincide with the interpolation nodes of unknown boundary functions. Anisotropic fundamental solutions are represented as a sum of static and dynamic parts expressed in terms of integrals over the unit circle and the half of the unit sphere, respectively. Numerical inversion of Laplace transform is realized at the nodes of the Runge-Kutta scheme using the time-step method. The boundary element analysis is conducted to demonstrate the influence of the viscoelastic properties of poroviscoelastic and anisotropic viscoelastic materials on the amplitude and shape of responses during the transition from instantaneous to equilibrium moduli. A numerical solution to the problem of force acting on a prismatic anisotropic viscoelastic solid is given. The problem of growing pressure in a spherical cavity inside a poroviscoelastic solid is also numerically solved.
Downloads
References
Frenkel J. On the theory of seismic and seismoelectric phenomena in a moist soil // J. Eng. Mech. - 2005. - Vol. 131, no. 9. - P. 879-887. DOI
2. Biot M.A. General theory of three-dimensional consolidation // J. Appl. Phys. - 1941. - Vol. 12, no. 2. - P. 155-164. DOI
3. Schanz M. Wave propagation in viscoelastic and poroelastic continua. - Berlin: Springer, 2001. - 170 p.
4. De Boer R. Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory // Appl. Mech. Rev. - 1996. - Vol. 49, no. 4. - P. 201-262. DOI
5. Nikolaevskiy V.N. Biot-Frenkel poromechanics in Russia (Review) // J. Eng. Mech. - 2005 - Vol. 131, no. 9. - P. 888-897. DOI
6. Garg S.K., Nayfeh A.H., Good A.J. Compressional waves in fluid-saturated elastic porous media // J. Appl. Phys. - 1974. - Vol. 45, no. 5. - P. 1968. DOI
7. Beskos D.E. Boundary element methods in dynamic analysis: Part II (1986-1996) // Appl. Mech. Rev. - 1997. - Vol. 50, no. 3. - P. 149-197. DOI
8. Carini A., Gioda G. A boundary integral equation technique for visco-elastic stress analysis // Int. J. Numer. Anal. Meth. Geomech. - 1986. - Vol. 10, no. 6. - P. 585-608. DOI
9. Hwu C., Chen Y.C. Analysis of defects in viscoelastic solids by a transformed boundary element method // Procedia Engineering. - 2011. - Vol. 10. - P. 3038-3043. DOI
10. Sim W.J., Kwak B.M. Linear viscoelastic analysis in time domain by boundary element method // Comput. Struct. - 1988. - Vol. 29, no. 4. - P. 531-539. DOI
11. Bazenov V.G., Igumnov L.A. Metody granicnyh integral’nyh uravnenij i granicnyh elementov v resenii zadac trehmernoj dinamiceskoj teorii uprugosti s soprazennymi polami. - M.: Fizmatlit, 2008. - 352 s.
12. Igumnov L.A., Ratausko A.U. Sagovyj metod cislennogo obrasenia preobrazovania Laplasa na uzlah shemy Runge-Kutty s ispol’zovaniem peremennogo saga integrirovania // Problemy procnosti i plasticnosti. - 2013. - T. 75, No 4. - S. 280-287.
13. Wang C.-Y., Achenbach J.D. Elastodynamic fundamental solutions for anisotropic solids // Geophys. J. Int. - 1994. - Vol. 118, no. 2. - P. 384-392. DOI
14. Wang C.-Y., Achenbach J.D. Three-dimensional time-harmonic elastodynamic Green’s functions for anisotropic solids // Proc. R. Soc. A. - 1995. - Vol. 449, no. 1937. - P. 441-458. DOI
15. Banjai L., Schanz M. Wave propagation problems treated with convolution quadrature and BEM // Lecture Notes in Applied and Computational Mechanics. - 2012. - Vol. 63. - P. 145-184. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.