Translational oscillations of a cylindrical drop in a bounded volume of fluid
DOI:
https://doi.org/10.7242/1999-6691/2016.9.4.38Keywords:
cylindrical drop, translational oscillations, free oscillations, forced oscillations, dynamics of contact line, Hocking’s boundary conditionAbstract
We consider the eigen and forced translational oscillations of a fluid drop surrounded by another fluid in a cylindrical vessel of finite volume. The drop is cylindrical in equilibrium and bounded axially by two parallel solid planes. Our approach takes into account the contact line dynamics of three continuous media (drop-liquid-solid surface), namely the velocity of the contact line proportional to the deviation of the contact angle from its equilibrium value. The Hocking’s parameter (so-called wetting parameter) is the proportionality coefficient in this case. A completely pinned contact line (so-called pinned-end edge condition) corresponds to the limiting value of Hocking’s parameter, which tends to zero. Hocking’s parameter tends to infinity in the opposite case of the fixed contact angle. The solution of the boundary value problem is found using Fourier series of Laplace operator eigen functions. The vibration force is directed along the symmetry axis of the drop. It is shown that the fundamental frequency of the translational mode of free oscillations vanishes at a critical value of Hocking’s parameter. Increasing the density of the drop or the radius of the vessel leads to the growth of the frequencies of eigenoscillations. The frequencies of the heavy drop (i.e. the drop having the density greater than that of the surrounding fluid) also increase with increasing relative radius of the drop, and for the light drop they decrease. We have revealed the existence of resonance effects for forced oscillations. The oscillation amplitude of the contact line is always finite, but the oscillation amplitude of the drop lateral surface tends to infinity in the zero limit of Hocking’s parameter. There are “anti-resonant” frequencies at which no deviation of the contact line from the equilibrium value is observed for any values of Hocking's parameter.
Downloads
References
Henderson D.M., Miles J.W. Surface-wave damping in a circular cylinder with a fixed contact line // J. Fluid Mech. - 1994. - Vol. 275. - P. 285-299. DOI
2. Slobozhanin L.A., Shevtsova V.M., Alexander J.I.D., Meseguer J., Montanero J.M. Stability of liquid bridges between coaxial equidimensional disks to axisymmetric finite perturbations: A review // Microgravity Sci. Technol. - 2012. - Vol. 24, no. 2. - P. 65-77. DOI
3. Lubimov D.V., Lubimova T.P., Ivancov A.O. Vlianie vibracij na gidrodinamiku rasplava pri vyrasivanii kristallov beskontaktnym metodom Bridzmena // Vycisl. meh. splos. sred. - 2011. - T. 4, No 4. - S. 52-62. DOI
4. Mampallil D., Eral H.B., Staicu A., Mugele F., van den Ende D. Electrowetting-driven oscillating drops sandwiched between two substrates // Phys. Rev. E. - 2013. - Vol. 88. - 053015. DOI
5. Kumar S. Liquid transfer in printing processes: liquid bridges with moving contact lines // Annu. Rev. Fluid Mech. - 2015. - Vol. 47. - P. 67-94. DOI
6. Kartavyh N.N., Sklaev S.V. O parametriceskom rezonanse polucilindriceskoj kapli na oscilliruusej tverdoj podlozke // Vestnik PGU. Seria: Fizika. - 2007. - No 1(6). - S. 23-28.
7. Demin V.A. K voprosu o svobodnyh kolebaniah kapillarnogo mosta // MZG. - 2008. - No 4. - S. 28-37. DOI
8. Alabuzev A.A., Lubimov D.V. Povedenie cilindriceskoj kapli pri mnogocastotnyh vibraciah // MZG. - 2005. - No 2. - S. 18-28. DOI
9. Ivancov A.O. Akusticeskie kolebania polusfericeskoj kapli // Vestnik PGU. Seria: Fizika. - 2012. - No 3. - S. 16-23.
10. De Zen P.Z. Smacivanie: statika i dinamika // UFN. - 1987. - T. 151, No 4. - S. 619-681. DOI
11. Voinov O.B. Gidrodinamika smacivania // MZG. - 1976. - No 5. - S. 76-84. DOI
12. Dussan V.E.B. On the spreading of liquids on solid surfaces: static and dynamic contact lines // Annu. Rev. Fluid Mech. - 1979. - Vol. 11. - P. 371-400. DOI
13. Shikhmurzaev Yu.D. Dynamic contact angles and flow in vicinity of moving contact line // AlChE Journal. - 1996. - Vol. 42, no. 3. - P. 601-612. DOI
14. Veretennikov I., Indeikina A., Chang H.-C. Front dynamics and fingering of a driven contact line // J. Fluid Mech. - 1998. Vol. 373. - P. 81-110. DOI
15. Bonn D., Eggers J., Indekeu J., Meunier J., Rolley E. Wetting and spreading // Rev. Mod. Phys. - 2009. - Vol. 81. - P. 739-805. DOI
16. Snoeijer J.H., Andreotti B. Moving contact lines: scales, regimes, and dynamical transitions // Annu. Rev. Fluid Mech. - 2013. - Vol. 45. - P. 269-292. DOI
17. Lubimov D.V., Lubimova T.P., Sklaev S.V. Neosesimmetricnye kolebania polusfericeskoj kapli // MZG. - 2004. - No 6. - S. 8-20. DOI
18. Lyubimov D.V., Lyubimova T.P., Shklyaev S.V. Behavior of a drop on an oscillating solid plate // Phys. Fluids. - 2006. - Vol. 18. - 012101. DOI
19. Puhnacev V.V., Semenova I.B. Model’naa zadaca o vnezapnom dvizenii linii trehfaznogo kontakta // PMTF. - 1999. -T. 40, No 4. - S. 51-61. DOI
20. Shklyaev S., Khenner M., Alabuzhev A.A. Enhanced stability of a dewetting thin liquid film in a single-frequency vibration field // Phys. Rev. E. - 2008. - Vol. 77. - 036320. DOI
21. Alabuzev A.A., Lubimov D.V. Vlianie dinamiki kontaktnoj linii na sobstvennye kolebania cilindriceskoj kapli // PMTF. - 2007. - T. 48, No 5. - S. 78-86. DOI
22. Hocking L.M. The damping of capillary-gravity waves at a rigid boundary // J. Fluid Mech. - 1987. - Vol. 179. - P. 253-266. DOI
23. Borkar A., Tsamopoulus J. Boundary-layer analysis of dynamics of axisymmetric capillary bridges // Phys. Fluids A. - 1991. - Vol. 3, no. 12. - P. 2866-2874. DOI
24. Fayzrakhmanova I.S., Straube A.V. Stick-slip dynamics of an oscillated sessile drop // Phys. Fluids. - 2009. - Vol. 21. - 072104. DOI
25. Shklyaev S., Straube A.V. Linear oscillations of a compressible hemispherical bubble on a solid substrate // Phys. Fluids. - 2008. - Vol. 20. - 052102. DOI
26. Fayzrakhmanova I.S., Straube A.V., Shklyaev S. Bubble dynamics atop an oscillating substrate: Interplay of compressibility and contact angle hysteresis // Phys. Fluids. - 2011. - Vol. 23. - 102105. DOI
27. Alabuzev A.A. Povedenie cilindriceskogo puzyr’ka pod dejstviem vibracij // Vycisl. meh. splos. sred. - 2014. - T. 7, No 2. - S. 151-161. DOI
28. Kajsina M.I. Azimutal’nye mody sobstvennyh kolebanij cilindriceskogo puzyr’ka // Vestnik PGU. Seria: Matematika. Mehanika. Informatika. - 2015. - No 2(29). - S. 37-45.
29. Alabuzev A.A., Kajsina M.I. Translacionnaa moda sobstvennyh kolebanij cilindriceskogo puzyr’ka // Vestnik PGU. Seria: Fizika. - 2015. - No 1(29). - S. 35-41.
30. Alabuzev A.A., Kajsina M.I. Vlianie dvizenia linii kontakta na osesimmetricnye kolebania cilindriceskogo puzyr’ka // Vestnik PGU. Seria: Fizika. - 2015. - No 2(30). - S. 56-68.
31. Alabuzev A.A., Kajsina M.I. Sobstvennye azimutal’nye kolebania cilindriceskogo puzyr’ka v sosude konecnogo ob"ema // Vestnik PGU. Seria: Fizika. - 2015. - No 3(31). - S. 38-47.
32. Alabuzhev A.A., Kaysina M.I. The translational oscillations of a cylindrical bubble in a bounded volume of a liquid with free deformable interface // Journal of Physics: Conference Series. - 2016. - Vol. 681. - 012043. DOI
33. Alabuzev A.A., Lubimov D.V. Vlianie dinamiki kontaktnoj linii na kolebania szatoj kapli // PMTF. - 2012. - T. 53, No 1. - S. 12-23. DOI
34. Zhang L., Thiessen D.B. Capillary-wave scattering from an infinitesimal barrier and dissipation at dynamic contact lines //J. Fluid Mech. - 2013. - Vol. 719. - P. 295-313. DOI
35. Ting C.-L., Perlin M. Boundary conditions in the vicinity of the contact line at a vertically oscillating upright plate: an experimental investigation // J. Fluid Mech. - 1995. - Vol. 295. - P. 263-300. DOI
36. Perlin M., Schultz W.W., Liu Z. High Reynolds number oscillating contact lines // Wave Motion. - 2004. - Vol. 40, no. 1. - P. 41-56. DOI
37. Alabuzev A.A. Prodol’nye kolebania cilindriceskoj kapli v ogranicennom ob"eme zidkosti // Vycisl. meh. splos. sred. - 2016. - T. 9, No 3. - S. 316-330. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.