The influence of non-stationary pressure on a thin spherical shell with an elastic filler

Authors

  • Anatoliy Vasilievich Vestyak Moscow Aviation Institute
  • Leonid Aleksandrovich Igumnov Научно-исследовательский институт механики Национального исследовательского Нижегородского государственного университета им. Н.И. Лобачевского
  • Dmitriy Valentinovich Tarlakovskii Institute of Mechanics of Moscow State University
  • Grigoriy Valerievich Fedotenkov Moscow Aviation Institute

DOI:

https://doi.org/10.7242/1999-6691/2016.9.4.37

Keywords:

non-stationary problem, elastic spherical shell, elastic filler, influence function, superposition principle, time-dependent pressure

Abstract

This article considers the non-stationary problem of a thin elastic spherical shell filled with an elastic medium under external pressure. The equations of Timoshenko’s model serve as the basis for describing the motion of the spherical shell. The reaction of the elastic filler is described by the equations of the theory of elasticity. The contact between the shell and the filler is assumed frictionless. Based on the principle of superposition, we have obtained an integral relationship between the normal displacements of the shell with filler and the external pressure to solve the problem. The kernel of this integral relationship is an influence function. This function is, in fact, the normal displacements of the shell with filler taken as a solution to the problem of the concentrated instantaneous external pressure effect. It is modeled by the use of Dirac delta functions. To get the influence function, the authors have applied a Fourier series expansion in terms of eigenfunctions of shell and filler sub-problems. A partial separation of variables leads to a system of differential equations for expansion series coefficients. Due to the substitution of the corresponding expansions into the equations of motion of shells, the system contains ordinary differential equations and partial differential equations with respect to the expansions coefficients of elastic displacement potentials in the filler. The relationship between these systems is governed by the contact conditions between the shell and the filler. To determine the series expansion coefficients, we have produced the Laplace transform in the time domain. As a result, the problem is reduced to solving the systems of algebraic and ordinary differential equations. The solution to these equations, taking into account contact conditions, leads to the expressions describing the coefficients for series expansion of the desired influence function. This is achieved through the relation between the modified Bessel functions of the first kind and the elementary functions. We have found the coefficients in the time domain analytically using exponent series expansions. The influence function and the integral relationship are used to solve a set of test problems. Analytical calculations of the corresponding integrals are carried out. The results of calculations are represented graphically with an assessment of their convergence based on the number of coefficients of series expansions of the influence functions.

Downloads

Download data is not yet available.

References

Gorskov A.G., Tarlakovskij D.V. Nestacionarnaa aerogidrouprugost’ tel sfericeskoj formy. - M.: Nauka, 1990. - 264 c.
2. Gorskov A.G., Tarlakovskij D.V. Dinamiceskie kontaktnye zadaci s podviznymi granicami. - M.: Nauka. Fizmatlit, 1995. - 352 s.
3. Vol’mir A.S. Obolocki v potoke zidkosti i gaza. Zadaci aerouprugosti. - M.: Nauka, 1976. - 416 c.
4. Vol’mir A.S. Obolocki v potoke zidkosti i gaza. Zadaci gidrouprugosti. - M.: Nauka, 1979. - 320 c.
5. Guz’ A.N., Kubenko V.D. Metody rasceta obolocek: v 5 t. - Kiev: Naukova dumka, 1982. - T. 5. Teoria nestacionarnoj aerogidrouprugosti obolocek.- 399 s.
6. Porucikov V.B. Metody dinamiceskoj teorii uprugosti. - M.: Nauka, 1986. - 328 c.
7. Slepan L.I. Nestacionarnye uprugie volny. - L.: Sudostroenie, 1972. - 374 c.
8. Slepan L.I., Akovlev U.S. Integral’nye preobrazovania v nestacionarnyh zadacah mehaniki. - L.: Sudostroenie, 1980. - 344 c.
9. Mikhailova E.Yu., Fedotenkov G.V. Nonstationary axisymmetric problem of the impact of a spherical shell on an elastic half-space (initial stage of interaction) // Mech. Solids. - 2011. - Vol. 46, no. 2. - P. 239-247. DOI
10. Tarlakovskii D.V., Fedotenkov G.V. Two-dimensional nonstationary contact of elastic cylindrical or spherical shells // J. Mach. Manuf. Reliab. - 2014. - Vol. 43, no. 2. - P. 145-152. DOI
11. Suskevic G.C., Suskevic S.V., Kiseleva N.N. Proniknovenie zvukovogo pola sfericeskogo izlucatela cerez sfericeskuu upruguu obolocku // Problemy fiziki, matematiki i tehniki. - 2014. - No 2 (19). - S. 25-32.
12. Rossihin U.A., Samarin V.V., Sitikova M.V. Volnovaa teoria udara uprugih tel ogranicennyh razmerov po uprugoj sfericeskoj obolocke // Vestnik NNGU. - 2011. - No 4-5. - S. 2463-2464.
13. Grigor’eva N.S., Fridman G.M. Difrakcia zvukovyh impul’sov na uprugoj sfericeskoj obolocke, pomesennoj v okeaniceskij volnovod // Akusticeskij zurnal. - 2014. - T. 60, No 3. - S. 230-239. DOI
14. Habahpaseva T.I. Udar uprugoj sfericeskoj obolockoj po tonkomu slou zidkosti // MZG. - 2015. - No 2. - S. 81-94. DOI
15. Il’menkov S.L., Klesev A.A., Klimenkov A.S. Metod funkcij Grina v zadace difrakcii zvuka na uprugoj obolocke nekanoniceskoj formy // Akusticeskij zurnal. - 2014. - T. 60, No 6. - S. 579-586. DOI
16. Zavoronok S.I., Rabinskij L.N. Osesimmetricnaa zadaca nestacionarnogo vzaimodejstvia akusticeskoj volny davlenia s uprugoj obolockoj vrasenia // Mehanika kompozicionnyh materialov i konstrukcij. - 2006. - T. 12, No 4. - S. 541-554.
17. Bogomolov V.G., Fedotov A.A. Zadaca vzaimodejstvia uprugoj sfericeskoj obolocki s zidkost’u // Inzenernyj zurnal: nauka i innovacii. - 2013. - No 2 (14). - S. 41. DOI
18. Tarlakovskij D.V., Fedotenkov G.V. Prostranstvennoe nestacionarnoe dvizenie uprugoj sfericeskoj obolocki // MTT. - 2015. - No 2. - S. 118-128. DOI
19. Mihajlova E.U., Starovojtov E.I., Fedotenkov G.V. Parametriceskoe issledovanie processa nestacionarnogo kontaktnogo vzaimodejstvia tonkoj sfericeskoj obolocki i uprugogo poluprostranstva // Materialy XX Mezdunar. simp. <>, Moskva, 17-21 fevrala 2014. - T. 2. - S. 31-32.
20. Mihajlova E.U., Tarlakovskij D.V., Fedotenkov G.V. Nestacionarnyj kontakt sfericeskoj obolocki i uprugogo poluprostranstva // Trudy MAI. - 2014. - No 78.
21. Sejfullaev A.I., Agalarov G.D. Svobodnye kolebania sfericeskoj obolocki s uprugim zapolnitelem // Stroitel’naa mehanika inzenernyh konstrukcij i sooruzenij. - 2015. - No 3. - S. 74-80.
22. Igumnov L.A., Litvincuk S.U., Belov A.A., Markov I.P. Vvedenie v granicno-elementnoe modelirovanie dinamiki anizotropnyh tel. - N. Novgorod: Nizegorodskij gosuniversitet, 2014. - 74 s.
23. Igumnov L.A., Markov I.P., Pazin V.P., Ipatov A.A. Granicno-elementnoe postroenie resenij dla trehmernoj matricy Grina // Problemy procnosti i plasticnosti. - 2013. - T. 75, No 2. - S. 123-129.
24. Levi G.Yu., Igumnov L.A. Some properties of the thermoelastic prestressed medium Green function // Materials Physics and Mechanics. - 2015. - Vol. 23, no. 1. - P. 42-46.
25. Netrebko A.V., Psenicnov S.G. Nekotorye zadaci dinamiki linejno-vazkouprugih cilindriceskih obolocek konecnoj dliny // Problemy procnosti i plasticnosti. - 2015. - T. 77, No 1. - S. 14-22.
26. Senickij U.E. Biortogonal’nye preobrazovania v nestacionarnyh zadacah teorii obolocek // Vestnik NIC <>. - 2010. - No 2. - S. 95-105.

Published

2016-12-30

Issue

Section

Articles

How to Cite

Vestyak, A. V., Igumnov, L. A., Tarlakovskii, D. V., & Fedotenkov, G. V. (2016). The influence of non-stationary pressure on a thin spherical shell with an elastic filler. Computational Continuum Mechanics, 9(4), 443-452. https://doi.org/10.7242/1999-6691/2016.9.4.37