Effect of wear on frictional heating and thermoelastic instability of sliding contact

Authors

  • Vladimir Borisovich Zelentsov Don State Technical University
  • Boris Igorevich Mitrin Don State Technical University
  • Igor Anatolievich Lubyagin Don State Technical University

DOI:

https://doi.org/10.7242/1999-6691/2016.9.4.36

Keywords:

friction, wear, sliding, contact, thermoelastic instability

Abstract

In this work, we consider a relationship between the wear of an elastic coating and the frictional heating on a sliding contact, as well as their joint effect on initiation and development of thermoelastic instability of sliding thermoelastic frictional contact. The initial boundary-value quasi-static problem of uncoupled thermoelasticity involving the sliding of a rigid body represented by a half-plane over the surface of an elastic coating is formulated with regard to Coulomb friction and frictional heat generation. The half-plane slides with a constant velocity; the coating is bonded to a rigid substrate. The work of frictional forces at the contact is spent on heating the coating and on its abrasive wear. To solve this problem, the Laplace integral transform is used. Solutions of the problem, namely temperature, stresses and displacements both on contact and in the depth of the coating, are represented in the form of the Laplace convolution. Integrand functions in stresses and displacements integrals are non-decaying at infinity (they remain constant), so the integrals containing them are understood in a generalized meaning. After regularization of integrands of displacements and stresses integrals, a solution to the problem is written as the sum of the regular constituent of a generalized part and the Laplace convolution. It is shown that the integrals depend on three dimensionless parameters of the problem. The placement of the poles of integrands in the complex plane of an integration variable is studied in detail. This gives the domains of stable and unstable solutions in the space of dimensionless parameters of the problem. After calculation of convolutions, the problem solution is represented by functional series over the poles of integrands, which is convenient for evaluation and analysis. The properties of stable and unstable exact solutions for temperature, wear and stresses on a sliding thermoelastic frictional contact are investigated in relation to the values of dimensional and dimensionless parameters of the problem.

Downloads

Download data is not yet available.

References

Barber J.R. Thermoelastic instabilities in the sliding of conforming solids // P. Roy. Soc. Lond. A Mat. - 1969. - Vol. 312. - P. 381-394. DOI
2. Dow Th.A., Burton R.A. Thermoelastic instability of sliding contact in the absence of wear // Wear. - 1972. - Vol. 19, no. 3. - P. 315-328. DOI
3. Burton R.A., Nerlikar V., Kilaparti S.R. Thermoelastic instability in a seal-like configuration // Wear. - 1973. - Vol. 24, no. 2. - P. 177-188. DOI
4. Morov V.A., Cerskij I.N. Termouprugaa neustojcivost’ frikcionnogo kontakta stampov s poluprostranstvom // Trenie i iznos. - 1985. - T. 6, No 1. - S. 27-38.
5. Afferrante L. Ciavarella M., Barber J.R. Sliding thermoelastodynamic instability // P. Roy. Soc. Lond. A Mat. - 2006. - Vol. 462. - P. 2161-2176. DOI
6. Galin L.A., Goraceva I.G. Osesimmetricnaa kontaktnaa zadaca teorii uprugosti pri nalicii iznosa // PMM. - 1977. - T. 41, No 5. - S. 807-812. DOI
7. Aleksandrov V.M., Annakulova G.K. Kontaktnaa zadaca termouprugosti s ucetom iznosa i teplovydelenia ot trenia // Trenie i iznos. - 1990. - T. 11, No 1. - S. 24-28.
8. Aleksandrov V.M., Annakulova G.K. Vzaimodejstvie pokrytij tel s ucetom deformiruemosti, iznosa i teplovydelenia ot trenia // Trenie i iznos. - 1992. - T. 13, No 1. - S. 154-160.
9. Evtusenko A.A., Pyr’ev U.A. Vlianie iznasivania na razvitie termouprugoj neustojcivosti frikcionnogo kontakta // MTT. - 1997. - No 1. - S. 114-121.
10. Olesiak Z.S., Pyryev Yu.A. A model of thermoelastic dynamic contact in conditions of frictional heat and wear // J. Theor. Appl. Mech. - 1998. - Vol. 36, no. 2. - P. 305-320.
11. Afferrante L., Ciavarella M. Thermo-elastic dynamic instability (TEDI)-a review of recent results // J. Eng. Math. - 2007. - Vol. 61, no. 2. - P. 285-300. DOI
12. Abbasi S., Teimourimanesh S., Vernersson T., Sellgren U., Olofsson U., Lunden R. Temperature and thermoelastic instability at tread braking using cast iron friction material // Wear. - 2014. - Vol. 314, no. 1-2. - P. 171-180. DOI
13. Shpenev A.G., Kenigfest A.M., Golubkov A.K. Theoretical and experimental study of carbon brake discs frictionally induced thermoelastic instability // Springer Proceedings in Physics. - 2016. - Vol. 175. - P. 551-559. DOI
14. Zelencov V.B., Mitrin B.I., Volkov S.S., Vasil’ev A.S. Termouprugodinamiceskaa neustojcivost’ resenia kontaktnoj zadaci dla pokrytia s ucetom teplovydelenia ot trenia // Vestnik DGTU. - 2014. - T. 14, No 4. - S. 17-29. DOI
15. Zelencov V.B., Mitrin B.I., Ajzikovic S.M. Dinamiceskaa i kvazistaticeskaa neustojcivost’ skol’zasego termofrikcionnogo kontakta // Trenie i iznos. - 2016. - T. 37, No 3. - S. 280-289. DOI
16. Kovalenko A.D. Vvedenie v termouprugost’. - Kiev: Naukova dumka, 1965. - 204 s.
17. Ditkin V.A., Prudnikov A.P. Operacionnoe iscislenie. - M.: Vyssaa skola, 1975. - 409 s.
18. Gurvic A., Kurant R. Teoria funkcij. - M.: Nauka, 1968. - 648 s.
19. Bryckov U.A., Prudnikov A.P. Integral’nye preobrazovania obobsennyh funkcij. - M.: Nauka, 1977. - 288 s.
20. Zabrejko P.P., Koselev A.I., Krasnosel’skij M.A. i dr. Integral’nye uravnenia. - M.: Nauka, 1968. - 448 s.

Published

2016-12-30

Issue

Section

Articles

How to Cite

Zelentsov, V. B., Mitrin, B. I., & Lubyagin, I. A. (2016). Effect of wear on frictional heating and thermoelastic instability of sliding contact. Computational Continuum Mechanics, 9(4), 430-442. https://doi.org/10.7242/1999-6691/2016.9.4.36