Simulation of the flow of a viscous fluid with particles through porous medium cells

Authors

  • Maria Sergeevna Deryabina Ugra State University
  • Sergey Ivanovich Martynov Ugra State University

DOI:

https://doi.org/10.7242/1999-6691/2016.9.4.35

Keywords:

numerical simulation, viscous fluid, porous structure, hydrodynamic particle interaction, internal interaction forces

Abstract

A mathematical model for the dynamics of a viscous fluid with particles in a porous medium has been developed using the idea of representing the environment as a system of stationary particles, through which a viscous fluid with moving particles simulating a dispersed phase flows. The model takes into account the hydrodynamic interaction of all, both mobile and fixed, particles. For computer simulation of this type of the flow, a software package is proposed. Numerical calculations of the fluid flow in a porous medium were performed for two model structures, consisting of, respectively, 450 and 599 fixed particles of the effective size. Dimensions of the dispersed particles placed in the viscous fluid were 0.3 and 0.1 of the effective particle size. Analysis of the calculated values of the fluid flow rate and the rate of displacement of dispersed particles allowed us to determine the appropriate numerical values of these parameters in a real porous medium. It has been found that by changing the size of dispersed particles, one can affect the trajectory and velocity of particle motion within the porous structure not only quantitatively, but also qualitatively. Using as an example one of the model structures, we have obtained the result indicating that some threshold space is blocked by a mobile particle, which leads to the cessation of further movement of particles.

Downloads

Download data is not yet available.

References

Laevskij U.M., Popov P.E., Kalinkin A.A. Modelirovanie fil’tracii dvuhfaznoj zidkosti smesannym metodom konecnyh elementov // Matem. modelirovanie. - 2010. - T. 22, No 3. - S.74-90.
2. Morozov D.N., Trapeznikova M.A., Cetveruskin B.N., Curbanova N.G. Modelirovanie zadac fil’tracii na gibridnyh vycislitel’nyh sistemah // Matem. modelirovanie. - 2012. - T. 24, No 10. - S. 33-39.
3. Berveno E.V., Kalinkin A.A., Laevskij U.M. Fil’tracia dvuhfaznoj zidkosti v neodnorodnoj srede na komp’uterah s raspredelennoj pamat’u // Vestn. Tom. gos. un-ta. Matematika i mehanika. - 2014. - No 4. - S. 57-62.
4. Nikiforov A.I., Sadovnikov R.V., Nikiforov G.A. O perenose dispersnyh castic dvuhfaznym fil’tracionnym potokom // Vycisl. meh. splos. sred. - 2013. - T. 6, No 1. - C. 47-53. DOI
5. Sukop M., Thorne D. Lattice Boltzmann modeling. An introduction for geoscientists and engineers. - Berlin: Springer, 2006. - 172 p.
6. Guo Z., Zhao T.S. Lattice Boltzmann model for incompressible flows through porous media // Phys. Rev. E. - 2002. - Vol. 66. - 036304. DOI
7. Zaretskiy Y., Geiger S., Sorbie K. Direct numerical simulation of pore-scale reactive transport: applications to wettability alteration during two-phase flow // IJOGCT. - 2012. - Vol. 5, no. 2/3. - P. 142-156. DOI
8. Sadhukhan S., Gouze P., Dutta T. Porosity and permeability changes in sedimentary rocks induced by injection of reactive fluid: A simulation model // J. Hydrol. - 2012. - Vol. 450-451. - P. 134-139. DOI
9. Molins S. Reactive interfaces in direct numerical simulation of pore-scale processes // Rev. Mineral. Geochem. - 2015. - Vol. 80. - P. 461-481. DOI
10. Gray W.G., Miller C.T. Introduction to the thermodynamically constrained averaging theory for porous medium systems // Advances in Geophysical and Environmental Mechanics and Mathematics. - 2014. - 582 p. DOI
11. Martynov S.I. Gidrodinamiceskoe vzaimodejstvie castic // MZG. - 1998. - No 2. - S. 112-119.
12. Baranov V.E., Martynov S.I. Vlianie gidrodinamiceskogo vzaimodejstvia na skorost’ osazdenia bol’sogo cisla castic v vazkoj zidkosti // MZG. - 2004. - No 1. - S. 152-164. DOI
13. Martynov S.I. Zamecania po stat’e O.B. Gus’kova <>. PMM. 2013. T. 77. Vyp. 4. S. 557-572 // PMM. - 2015. - T. 79, No 1. - S. 147-149. DOI
14. Martynov S.I., Tkac L.U. Modelirovanie dinamiki agregatov castic v vazkoj zidkosti // ZVMMF. - 2015. - T. 55, No 2. - S. 285-294. DOI
15. Happel’ Dz., Brenner G. Gidrodinamika pri malyh cislah Rejnol’dsa. - M.: Mir, 1976. - 632 s.

Published

2016-12-30

Issue

Section

Articles

How to Cite

Deryabina, M. S., & Martynov, S. I. (2016). Simulation of the flow of a viscous fluid with particles through porous medium cells. Computational Continuum Mechanics, 9(4), 420-429. https://doi.org/10.7242/1999-6691/2016.9.4.35