On the theory of global factor influence on the strength of a set of parallel connections of layers
DOI:
https://doi.org/10.7242/1999-6691/2016.9.4.34Keywords:
stress-strain state, drifts, factorization, deformable layers, interface layer, Kirchhoff plates, block elements, differential and integral equationsAbstract
We consider the problem of estimating the strength of facilities such as underground structures placed in materials with armature cavities, fixtures such as diaphragm wall interlayers arranged in parallel in multilayer structures and forming some sets. Traditionally, studies are carried out for an individual fixture and then the parameters found are accepted for all other facilities. At the same time a plurality of such facilities may lead to the occurrence of another factor badly affecting the strength. This factor is associated with the capability to localize the state of strain in one of the structure zones, which results in exceeding the planned strength parameters. In the present work, as a practical example of the theory for calculation of the strength properties of these objects, underground structures are investigated. The block element method having its origin in factorization approaches forms the basis of our research. The problem is reduced to the system of Fredholm integral equations of the second kind. We have succeeded to reduce the system of integral equations to that of algebraic equations, which are accessible to the analytical analysis allowing finding the localization of strain and shift during the calculation of integrals describing the kernels of these equations by the theory of residue. An algorithm realizing this investigation is presented. The applicability of factorization methods for such problems is discussed.
Downloads
References
Babesko V.A., Babesko O.M., Evdokimova O.V., Fedorenko A.G., Sestopalov V.L. K probleme pokrytij s tresinami v nanomaterialah i sejsmologii // MTT. - 2013. - No 5. - S. 39-45. DOI
2. Babesko V.A., Evdokimova O.V., Babesko O.M. K probleme fiziko-mehaniceskogo predvestnika startovogo zemletrasenia: mesto, vrema, intensivnost’ // DAN. - 2016. - T. 466, No 6. - S. 664-669. DOI
3. Vorovic I.I., Babesko V.A. Dinamiceskie smesannye zadaci teorii uprugosti dla neklassiceskih oblastej. - M.: Nauka, 1979. - 320 s.
4. Vorovic I.I., Aleksandrov V.M., Babesko V.A. Neklassiceskie smesannye zadaci teorii uprugosti. - M.: Nauka, 1974. - 456 s.
5. Babesko V.A. Obobsennyj metod faktorizacii v prostranstvennyh dinamiceskih smesannyh zadacah teorii uprugosti. - M.: Nauka, 1984. - 256 s.
6. Barenblatt G.I., Hristianovic S.A. Ob obrusenii krovli pri gornyh vyrabotkah // Izv. AN SSSR. OTN. - 1955. - No 11. - S. 73-82.
7. Babesko V.A., Evdokimova O.V., Babesko O.M. O <> teorii nekotoryh anomal’nyh prirodnyh avlenij // DAN. - 2012. - T. 447, No 1. - S. 33-37. DOI
8. Babesko V.A., Vorovic I.I., Obrazcov I.F. Avlenie vysokocastotnogo rezonansa v poluogranicennyh telah s neodnorodnostami // MTT. - 1990. - No 3. - S. 74-83.
9. Babesko V.A., Ritcer D., Evdokimova O.V., Babesko O.M. O lokalizacii energii prirodnyh processov i prirodnye virusy // DAN. - 2013. - T. 448, No 4. - S. 406-409. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.