On the localization of discontinuities in calculations of incompressible elastic media dynamics

Authors

  • Anatoly Aleksandrovich Burenin Institute of Machine Engineering and Metallurgy FEB RAS
  • Georgy Mamievich Sevastyanov Institute of Machine Engineering and Metallurgy FEB RAS
  • Viktor Igorevich Shtuka Institute of Automatics and Controlled Processes FEB RAS

DOI:

https://doi.org/10.7242/1999-6691/2016.9.4.33

Keywords:

dynamics of elastic medium, numerical methods, shock waves, incompressible medium, ray series method

Abstract

The problem of algorithmic localization of closely spaced discontinuities of strains is considered in the present paper by the example of one-dimensional cylindrical rupture surfaces (shock waves). These shock waves are generated in a cylindrical layer of an incompressible elastic medium through the twisting impact action in the presence of preliminary antiplanar strain. We assume that strains (preliminary and acquired in the course of propagation of boundary perturbation in the environment) are finite, and the Almansi tensor is used as their measure. It is shown that the boundary shock perturbation causes in a medium two front surfaces of strain discontinuity: the plane-polarized shock wave of load, which increases the preliminary antiplane shear, and the neutral circularly polarized wave, which changes the shift direction in accordance with the impact produced. Velocity values, with which the discontinuity surfaces propagate in the elastic medium, are determined. The propagation velocity of a plane-polarized shock wave of load depends on the pre-strain in the medium and the intensity of the boundary impact. The propagation velocity of the shock wave of circular polarization (neutral shock wave) is completely determined by pre-strain in the medium. In order to determine the position of the discontinuity surfaces and calculate the intensity of discontinuities at each time step, we are building special frontline ray expansions, which are embedded in the finite-difference calculation scheme. These expansions are written for grid points outside the frontal region. A way of constructing frontline ray expansions behind the surface of the strain discontinuity is specified. It is based on the recurrence properties of geometric and kinematical compatibility conditions. A numerical algorithm and a program for calculating the displacement fields and a component of the Cauchy stress tensor are constructed for the specified problem. Results of the computational experiment for the rubber-like material with the specified properties are obtained.

Downloads

Download data is not yet available.

References

Belocerkovskij O.M. Cislennoe modelirovanie v mehanike splosnyh sred. - M.: Nauka, 1984. - 519 s.
2. Kulikovskij A.G., Pogorelov N.V., Semenov A.U. Matematiceskie voprosy cislennogo resenia giperboliceskih sistem uravnenij. - M.: Fizmatlit, 2001. - 608 s.
3. Godunov S.K., Zabrodin A.V., Ivanov M.A., Prokopov G.P. Cislennoe resenie mnogomernyh zadac gazovoj dinamiki. - M.: Nauka, 1976. - 400 s.
4. Magomedov K.M., Holodov A.S. Setocno-harakteristiceskie cislennye metody. - M.: Nauka, 1988. - 288 s.
5. Moretti G. On the matter of shock fitting // Proc. of the Fourth International Conference on Numerical Methods in Fluid Dynamics. - Vol. 35. - P. 287-292. DOI
6. Alalykin G.B., Godunov S.K., Kireeva I.L., Pliner L.A. Resenie odnomernyh zadac gazovoj dinamiki v podviznyh setkah. - M.: Nauka, 1970. - 112 s.
7. Azarova O.A., Vlasov V.V., Grudnickij V.G., Popov N.N., Rygalin V.N. Raznostnaa shema na minimal’nom sablone i ee primenenie v algoritmah vydelenia razryvov // Algoritmy dla cislennogo issledovania razryvnyh tecenij. Trudy VC RAN / Pod red. V.M. Borisova. - M.: VC RAN, 1993. - S. 9-55.
8. Kukudzanov V.N., Kondaurov V.I. Cislennoe resenie neodnomernyh zadac dinamiki tverdogo tela // Problemy dinamiki uprugoplasticeskih sred. Seria <>. - 1975. - No 5. - S. 39-84.
9. Kuropatenko V.F. Metody rasceta udarnyh voln // DVMZ. - 2001. - T. 2, No 2. - S. 45-59.
10. Ivanov G.V., Volckov U.M., Bogul’skij I.O., Anisimov S.A., Kurguzov V.D. Cislennoe resenie dinamiceskih zadac uprugoplasticeskogo deformirovania tverdyh tel. - Novosibirsk: Sib. univ. Izd-vo, 2002. - 352 s.
11. Kondaurov V.I., Petrov I.B., Holodov A.S. Cislennoe modelirovanie processa vnedrenia zestkogo tela vrasenia v uprugoplasticeskuu pregradu // PMTF. - 1984. - No 4. - S. 132-139. DOI
12. Afanas’ev S.B., Bazenov V.G. O cislennom resenii odnomernyh nestacionarnyh zadac uprugoplasticeskogo deformirovania splosnyh sred metodom Godunova // Prikladnye problemy procnosti i plasticnosti. - 1986. - No 33. - S. 21-29.
13. Ivanov M.A., Krajko A.N. Ob approksimacii razryvnyh resenij pri ispol’zovanii raznostnyh shem skvoznogo sceta // ZVMMF. - 1978. - T. 18, No 3. - S. 780-783. DOI
14. Burenin A.A., Zinov’ev P.V. K probleme vydelenia poverhnostej razryvov v cislennyh metodah dinamiki deformiruemyh sred // Problemy mehaniki. Sb. statej k 90-letiu A.U. Islinskogo / Pod red. D.M. Klimova. - M.: Fizmatlit, 2003. - S. 146-155.
15. Gerasimenko E.A., Zavertan A.V. Rascety dinamiki neszimaemoj uprugoj sredy pri antiploskom i skrucivausem udare // Vycisl. meh. splos. sred. - 2008. - T. 1, No 3. - S. 46-56. DOI
16. Burenin A.A., Ragozina V.E. K zakonomernostam rasprostranenia deformacij // Modelirovanie i mehanika: sb. nauc. statej / Pod red. S.I. Senasova. - Krasnoarsk: SibGAU, 2012. - S. 31-36.
17. Achenbach J.D., Reddy D.R. Note on wave propagation in linearly viscoelastic media // Zeitschrift fur Angewandte Mathematik und Physik. - 1967. - Vol. 18, no. 1. - P. 141-144. DOI
18. Rossikhin Yu.A., Shitikova M.V. Ray method for solving dynamic problems connected with propagation of wave surfaces of strong and weak discontinuities // Appl. Mech. Rev. - 1995. - Vol. 48, no. 1. - P. 1-39. DOI
19. Burenin A.A. Ob odnoj vozmoznosti postroenia priblizennyh resenij nestacionarnyh zadac dinamiki uprugih sred pri udarnyh vozdejstviah // Dal’nevostocnyj matematiceskij sbornik. - 1999. - No 8. - S. 49-72.
20. Burenin A.A., Rossichin Yu.A., Shitikova M.V. A method for solving boundary value problems connected with the propagation of finite amplitude shock waves // Proc. of the 1993 International Symposium on Nonlinear Theory and its Applications. NOLTA 93, Hawaii, December 5-10, 1993. - Vol. 3. - P. 1085-1088.
21. Gerasimenko E.A., Zavertan A.A. Lucevye prifrontovye razlozenia resenij v kacestve sredstva vydelenia razryvov v cislennyh rascetah dinamiki deformirovania // ZVMMF. - 2009. - T. 49, No4. - S. 722-733. DOI
22. Lur’e A.I. Nelinejnaa teoria uprugosti. - M.: Nauka, 1980. - 512 s.
23. Kulikovskij A.G., Svesnikova E.I. Issledovanie udarnoj adiabaty kvazipoperecnyh udarnyh voln v predvaritel’no naprazennoj uprugoj srede // PMM. - 1982. - T. 46, no. 5. - S. 831-840. DOI
24. Burenin A.A. Ob udarnom deformirovanii neszimaemogo uprugogo poluprostranstva // Prikladnaa mehanika. - 1985. - T. 21, No 5. - S. 3-8. DOI
25. Tomas T. Plasticeskoe tecenie i razrusenie v tverdyh telah. - M.: Mir, 1964. - 308 s.
26. Bykovcev G.I., Ivlev D.D. Teoria plasticnosti. - Vladivostok: Dal’nauka, 1998. - 528 s.
27. Gerasimenko E.A., Ragozina V.E. Geometriceskie i kinematiceskie ogranicenia na razryvy funkcij na dvizusihsa poverhnostah // DVMZ. - 2004. - T. 5, No 1. - S. 100-109.

Published

2016-12-30

Issue

Section

Articles

How to Cite

Burenin, A. A., Sevastyanov, G. M., & Shtuka, V. I. (2016). On the localization of discontinuities in calculations of incompressible elastic media dynamics. Computational Continuum Mechanics, 9(4), 400-411. https://doi.org/10.7242/1999-6691/2016.9.4.33