Analytical and numerical modeling of the work of a perfect well in anisotropic homogeneous soil formation
DOI:
https://doi.org/10.7242/1999-6691/2016.9.4.32Keywords:
well, porous medium, Darcy’s law, anisotropic layer, arbitrary boundary of reservoir, production, permeability tensorAbstract
The extraction of oil and gas reservoirs in complex geological structures is constantly increasing. Thus, it is obvious that the reliable mathematical models governing such porous media must be of interest. The problem is concerned with the work of a well in anisotropic soil formation in the case of a random smooth (piecewise-smooth) external boundary of reservoir. The permeability of the soil is described by an asymmetric second-rank tensor. To find a solution to the problem is difficult because of the complicated form of the basic equation. The solution can be simplified if the equation is transformed into the Laplace equation. To do this, we turn on the auxiliary plane using homeomorphic (affine) transformation. In a special case when the external boundary of reservoir of the auxiliary plane takes the form of a circle, we arrive at a closed-form (analytical) solution. These analytic solutions are useful in testing numerical codes. In the general case, the problem is reduced to a system of integral equations with Cauchy kernel and the integral relation. The system is solved by the method of discrete singularities. Convergence of the algorithm is studied. Convergence solutions are improved with an increase in the number of division points. The convergence solutions with a piecewise-smooth (square) external boundary of reservoir are slightly worse compared with the smooth (circular) ones. Soil anisotropy greatly affects the production rate and can strongly change the production rate compared to the rate of the well in an isotropic soil. Permeability tensor components located on the main diagonal have a major impact on the rate of flow in the anisotropic soil. This method can be used to solve different problems in filtering anisotropic porous medium.
Downloads
References
Grafutko S.B. Izmenenia anizotropnyh svojstv plasta pod dejstviem fil’tracionnogo potoka / Avtoref. diss.. kand. tehn. nauk: 01.02.05. - Moskva, gos. akademia nefti i gaza im. I.M. Gubkina, 1993. - 28 s.
2. Dmitriev N.M., Maksimov V.M., Dmitriev M.N., Kuz’micev A.N., Muradov A.V., Kravcenko M.N. Dvuhfaznaa fil’tracia v anizotropnyh sredah. Teoria i eksperiment // XI Vserossijskij s"ezd po fundamental’nym problemam teoreticeskoj i prikladnoj mehaniki: Sb. dokladov, Kazan’, 20-24 avgusta 2015 g. - Kazan’: Izd-vo Kazan. un-ta, 2015. - S. 1199-1201. (URL: http://libweb.kpfu.ru/publication/papers/XIMecon/00419.pdf).
3. Dmitriev N.M., Mamedov M.T., Maksimov V.M. Fil’tracia s predel’nym gradientom v anizotropnyh sredah. Teoria i eksperiment // Vestnik NNGU. - 2011. - No 4-3. - S. 749-750.
4. Semenov A.A Eksperimental’nye issledovania fil’tracionnyh tecenij v anizotropnyh poristyh sredah / Avtoref. disc.. kand. tehn. nauk: 01.02.05. - Moskva, RGU nefti i gaza im. I.M. Gubkina, 2007. - 26 s.
5. Carnyj I.A. Podzemnaa gidrogazodinamika. - M.-Izevsk: Institut komp’uternyh issledovanij, 2006. - 436 s.
6. Ar’e A.G. Fiziceskie osnovy fil’tracii podzemnyh vod. - M.: Nedra, 1984. - 101 s.
7. Masket M. Fiziceskie osnovy tehnologii dobyci nefti. - M.-Izevsk: Institut komp’uternyh issledovanij, 2004. - 606 s.
8. Ber A., Zaslavski D., Irmej S. Fiziko-mehaniceskie osnovy fil’tracii vody. - M.: Mir, 1971. - 452 s.
9. Selkacev V.N., Lapuk B.B. Podzemnaa gidravlika. - M.-Izevsk: NIC <>, Institut komp’uternyh issledovanij, 2001. - 736 s.
10. Polubarinova-Kocina P.A. Teoria dvizenia gruntovyh vod. - M.: Nauka, 1977. - 664 s.
11. Masket M. Tecenie odnorodnyh zidkostej v poristoj srede. - M.-Izevsk: NIC <>, 2004. - 628 s.
12. Basniev K.S., Dmitriev N.M., Kanevskaa R.D., Maksimov V.M. Podzemnaa gidromehanika. - M.-Izevsk: Institut komp’uternyh issledovanij, 2006. - 488 s.
13. Kucuk F. Transient flow in elliptical systems / PhD Dissertation in Petroleum Engineering. - Stanford: Stanford University, 1978. - 131 p.
14. Kollinz R. Tecenia zidkostej cerez poristye materialy. - M.: Mir, 1964. - 350 s.
15. Gubajdullin D.A., Nikiforov A.I., Sadovnikov R.V. Identifikacia tenzorov koefficientov pronicaemosti neodnorodnogo anizotropnogo tresinovato-poristogo plasta // Vycisl. meh. splos. sled. - 2011. - T. 4, No 4. - S. 11-19. DOI
16. Tolpaev V.A. Matematiceskie modeli dvumernoj fil’tracii v anizotropnyh, neodnorodnyh i mnogoslojnyh sredah / Diss.. dokt. fiz.-mat. nauk: 05.13.18. - Stavropol’, Severo-Kavkazskij gosudarstvennyj tehniceskij universitet, 2004. - 293 s.
17. Piven’ V.F. Matematiceskie modeli fil’tracii zidkosti. - Orel: OGU im. I.S. Turgeneva, 2015. - 408 s.
18. Piven’ V.F. Issledovanie granicnyh zadac ploskoparallel’nyh tecenij zidkosti v anizotropnoj poristoj srede // Differencial’nye uravnenia. - 2009. - T. 45, No 9. - S. 1286-1297. DOI
19. Baron V., Coudiere Y., Sochala P. Comparison of DDFV and DG methods for flow in anisotropic heterogeneous porous media // Oil & Gas Science and Technology - Rev. IFP Energies nouvelles. - 2014. - Vol. 69, no. 4. - P. 673-686. DOI
20. Piven’ V.F., Lekomcev D.G. Issledovanie raboty soversennoj skvaziny v anizotropnom odnorodnom plaste grunta // Ucenye zapiski OGU. Seria: Estestvennye, tehniceskie i medicinskie nauki. - 2014. - No 3. - S. 83-88.
21. Piven’ V.F., Lekomcev D.G. Matematiceskoe modelirovanie raboty soversennoj skvaziny s pramolinejnym konturom pitania v anizotropnom plaste grunta // Ucenye zapiski OGU. Seria: Estestvennye, tehniceskie i medicinskie nauki. - 2012. - No 3. - S. 69-74.
22. Mozgova E.V. Issledovanie debita soversennoj skvaziny v anizotropnom grunte // Trudy XIV Mezdunarodnogo simpoziuma <> (MDOZMF-2009), Herson, 8-12 iuna 2009 g. - Har’kov: Izd-vo HNU im. V.N. Karazina, 2009. - S. 366-369.
23. Lifanov I.K. Metod singularnyh integral’nyh uravnenij i cislennyj eksperiment. - M.: TOO Anus, 1995. - 520 s.
24. Fedaev U.S. Matematiceskoe modelirovanie evolucii dvumernoj granicy razdela zidkostej razlicnoj vazkosti v kusocno-odnorodnyh i kusocno-neodnorodnyh sloah grunta / Diss.. kand. fiz.-mat. nauk: 05.13.18. - Orel, OGU, 2005. - 191 s.
25. Aksuhin A.A. Matematiceskoe modelirovanie granicnyh zadac fil’tracii k skvazine v neodnorodnyh sloah grunta / Diss.. kand. fiz.-mat. nauk: 05.13.18. - Orel, OGU, 2000. - 153 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.