Finite element method for calculation of bending of micropolar elastic thin plates

Authors

  • Knarik Araratovna Zhamakochyan Gyumri State Pedagogical Institute n.a. M. Nalbandyan
  • Samvel H. Sargsyan Gyumri State Pedagogical Institute n.a. M. Nalbandyan

DOI:

https://doi.org/10.7242/1999-6691/2016.9.3.31

Keywords:

micropolar theory of elasticity, plate, bend, finite element method

Abstract

A general applied theory of bending deformation of micropolar elastic thin plates subjected to transverse shear deformation is presented in differential and variation formulations. Equilibrium equations, elasticity and geometric relations, natural boundary conditions of bending of micropolar thin plates follow from this variation principle. The theory has been derived from the corresponding three-dimensional theory using the hypothesis method, which adequately expresses the properties of the asymptotic solutions in the case of thin plate. In the present paper, a finite element method is applied to solve the boundary problems of micropolar elastic thin plates under bending loads. On the basis of free displacement and rotation laws, the effective quadrangular finite elements are designed. Application of the constructed stiffness matrix enables us to perform the procedure of formation of the system of algebraic linear equations. A particular problem of bending of a square micropolar elastic plate under evenly distributed power load is considered for the plate with hinged-supported edges. The plate is investigated in the framework of the theory of micropolar elasticity. Numerical implementation of the system of linear algebraic equations of the finite element method is carried out. In parallel, numerical results for the corresponding classical elastic case of the plate material (with consideration of transverse shear deformation) are obtained by the the finite element method, while other values of problem parameters are equal. Analysis of the numerical results shows the advantage of the micropolar approach over the classical one for describing the stiffness and strength of the examined plate.

Downloads

Download data is not yet available.

References

Altenbach H., Eremeyev V.A. On the linear theory of micropolar plates // ZAMM. - 2009. -Vol. 89, no. 4. - P. 242-256. DOI
2. Altenbach J., Altenbach H., Eremeyev V.A. On generalized Cosserat-tape theories of plates and shells: a short review and bibliography // Archive of Applied Mechanics. - 2010. - Vol. 80, no. 1. - P. 73-92. DOI
3. Mechanics of generalized continua: one hundred year after the Cosserats // Advances in Mechanics and Mathematics / Ed. by G. Maugin, A.V. Metrikine. - 2010. - 337 p. DOI
4. Mechanics of generalized continua - from micromechanical basics to engineering applications / Ed. by H. Altenbach, G. Maugin, V. Erofeev. - New York: Springer-Verlag, 2011. - 350 p.
5. Vvedenie v mikro- i nanomehaniku. Matematiceskie modeli i metody / Pod red. A.I. Potapova. - N. Novgorod: Izd-vo NGTU im. R.E. Alekseeva. - 2010. - 303 s.
6. Vycislitel’naa mehanika splosnyh sred. - 2009. - T. 2, No 4.
7. Sarkisan S.O. Matematiceskaa model’ mikropolarnyh uprugih tonkih plastin i osobennosti ih procnostnyh i zestkostnyh harakteristik // PMTF. - 2012. - T. 53, No 2. - S. 148-156. DOI
8. Sarkisan S.O. Obsaa teoria mikropolarnyh uprugih tonkih obolocek // Fiz. mezomeh. - 2011. - T. 14, No 1. - S. 55-66.
9. Sargsyan S. Asymptotically confirmed hypotheses method for the construction of micropolar and classical theories of elastic thin shells // Advances in Pure Mathematics. - 2015. - Vol. 5, no. 10. - P. 629-642. DOI
10. Sargsyan S.H. Energy balance equation, energetic theorems and variation equation for the general theory of micropolar elastic isotropic thin shells // International Journal of Mechanics. - 2014. - Vol. 8. - P. 93-100.
11. Nakamura S., Benedict R., Lakes R. Finite element method for orthotropic micropolar elasticity // Int. J. Eng. Sci. - 1984. - Vol. 22, no. 3. - P. 319-330. DOI
12. Nakamura S., Lakes R.S. Finite element analysis of stress concentration around a blunt crack in a Cosserat elastic solid // Comput. Method Appl. M. - 1988. - Vol. 66, no. 3. - P. 257-266. DOI
13. Korepanov V.V., Matveenko V.P., Sardakov I.N. Cislennoe issledovanie dvumernyh zadac nesimmetricnoj teorii uprugosti // MTT. - 2008. - No 2. - S. 63-70.
14. Korepanov V.V. Cislennoe obosnovanie eksperimentov po obnaruzeniu effektov momentnogo povedenia materialov // Vestnik NNGU. - 2011. - No 4-4. - S. 1536-1538.
15. Nesterov V.A. Model’nyj rascet plastiny, podatlivoj pri transversal’nom sdvige // Mehanika kompozitnyh materialov. - 2015. - T. 51, No 1. - S. 59-76. DOI
16. Nesterov V.A. Matrica zestkosti konecnogo elementa plastiny, podatlivoj pri transversal’nom sdvige // Mehanika kompozitnyh materialov. - 2011. -T. 47, No 3. - S. 399-418. DOI
17. Lakes R.S. Experimental methods for study of Cosserat elastic solids and other generalized continua // Continuum models for materials with micro-structure / Ed. by H. Muhhaus. - New York: Wiley, 1995. - P. 1-22.

Published

2016-09-30

Issue

Section

Articles

How to Cite

Zhamakochyan, K. A., & Sargsyan, S. H. (2016). Finite element method for calculation of bending of micropolar elastic thin plates. Computational Continuum Mechanics, 9(3), 375-383. https://doi.org/10.7242/1999-6691/2016.9.3.31