Multilevel analysis of the relief of a surface sample obtained by atomic force microscopy techniques
DOI:
https://doi.org/10.7242/1999-6691/2016.9.3.30Keywords:
AFM, surface relief, filler particle aggregates, material structure, multilevel analysisAbstract
Atomic force microscopy is used to study the structure of a material and its local mechanical properties on the nanoscale. This information can be applied to analyze the macroscopic homogeneity nanocomposites (quality of mixing with filler), the mechanical properties of which depend directly on the distribution of filler particles throughout the material. Hence, it is necessary to identify filler particle aggregates visible on the surface of a sample. For this purpose, a technique capable of identifying objects of a specific size on the curved surface is proposed. The method is based on the decomposition of the initial topographic image into the sum of several reliefs using a linear averaging spatial filter. Each relief is identified so that it contains certain-size objects and can be analyzed separately. It is suggested that this procedure be called multilevel visualization or multilevel analysis. This paper is focused on the decomposition of the initial topographic image into three components: relief with objects of high curvature surface, low curvature relief and relief with objects of medium curvature surface. The technique is intended to study nanocomposites created using granular filler. The efficiency of the developed method has been verified by testing a specially designed surface, which is much like as the real surface of the material analyzed by AFM. Parameters affecting the accuracy of object identification are determined. Recommendations for practical application of the multilevel visualization to the analysis of experimental data are given.
Downloads
References
Mironov V.L. Osnovy skaniruusej zondovoj mikroskopii. - N.-Novgorod: Institut fiziki mikrostruktur RAN, 2004. - 115 s.
2. Garisin O.K. Modelirovanie kontaktnogo rezima raboty atomno-silovogo mikroskopa s ucetom nemehaniceskih sil vzaimodejstvia s poverhnost’u obrazca // Vycisl. meh. splos. sred. - 2012. - T. 5, No 1. - S. 61-69. DOI
3. Butt H.-J., Cappella B., Kappl M. Force measurements with the atomic force microscope: Technique, interpretation and applications // Surf. Sci. Rep. - 2005. - Vol. 59, no. 1-6. - P. 1-152. DOI
4. Wang C.C., Wu S.H., Donnet J.B., Wang T.K. Microdispersion of carbon blacks in rubber: Distance distribution of aggregates by AFM image analysis Part II. // Kaut. Gummi Kunstst. - 2006. - Vol. 59, no. 9. - P. 466-472.
5. http://www.ntmdt.ru/mikroskopy-dlya-obrazovaniya/nanoeducator-2 (data obrasenia: 04.07.2016).
6. http://gwyddion.net/documentation/user-guide-ru/filters.html (data obrasenia: 04.07.2016).
7. http://www.nanoscopy.net/femtoscanonline/ru/ (data obrasenia: 04.07.2016).
8. Gonzalez R.C., Woods R.E. Digital image processing. - New Jersey: Prentice Hall, 2002. - 793 p.
9. Strugajlo V.V. Obzor metodov fil’tracii i segmentacii cifrovyh izobrazenij // Nauka i obrazovanie. - 2012. - T. 5. - S. 270-281. DOI
10. Krasnasih A.V. Obrabotka opticeskih izobrazenij. - SPb: NIU ITMO, 2012. - 130 s.
11. Serebrakov A.E. Analiz trehmernyh izobrazenij nanorel’efa opticeskih poverhnostej / Diss.. kand. tehn. nauk: 01.04.01. - Razan’, RGRTU, 2015. - 155 s.
12. Iziumov R.I., Svistkov A.L. Cartographic method of surface characteristics analysis // Pattern Recognition and Image Analysis. - 2016. - Vol. 26, no. 1. - P. 125-135. DOI
13. Wang Y., Wang H., Bi S., Guo B. Automatic morphological characterization of nanobubbles with a novel image segmentation method and its application in the study of nanobubble coalescence // Beilstein J. Nanotechnol. - 2015. - Vol. 6. - P. 952-963. DOI
14. Morozov I.A. Identification of primary and secondary filler structures in a polymer matrix by atomic force microscopy images analysis methods // Polym. Composite. - 2013. - Vol. 34, no. 3. - P. 433-442. DOI
15. Sevruk V.A., Brunkov P.N., Sal’nev I.V., Gutkin A.A., Klimko G.V., Gronin S.V., Sorokin S.V., Konnikov S.G. DOI
16. Statisticeskij analiz topograficeskih ASM-izobrazenij samoorganizovannyh kvantovyh tocek // FTP. - 2013. - T. 47, No 7. - S. 921-926.
17. Cuklanov A.P., Borodin P.A., Zigansina S.A., Buharaev A.A. Algoritm dla analiza ASM-izobrazenij poverhnostej so sloznoj morfologiej // Ucen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki. - 2008. - T. 150, No 2. - S. 220-227.
18. Furman A.A., Kraveckij A.V., Peredreev A.K., Rozencov A.A., Hafizov R.G., Egosina I.L., Leuhin A.N. Vvedenie v konturnyj analiz: prilozenie k obrabotke izobrazenij i signalov. - M: Fizmatlit, 2003. - 592 s. DOI
19. Men’sikov E.A., Bol’sakova A.V., Vinogradova O.I., Aminskij I.V. Metody analiza ASM-izobrazenij tonkih plenok blok-sopolimerov // Fizikohimia poverhnosti i zasita materialov. - 2009. - T. 45, No 1. - S. 108-111.
20. Florinskij I.V. Teoria i prilozenia matematiko-kartograficeskogo modelirovania rel’efa / Diss.. d-ra tehn. nauk: 25.00.33. - Pusino, MIIGAiK, 2010. - 267 s.
21. Kovaleva O.V. Soversenstvovanie izobrazenia rel’efa na melkomasstabnyh kartah / Diss.. kand. tehn. nauk: 25.00.33. - Moskva, MIIGAiK, 2012. - 218 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.