Stress softening effect on changes in the stress-strain state of a tire

Authors

  • Aleksandr Konstantinovich Sokolov Institute of Continuous Media Mechanics UB RAS
  • Aleksandr Lvovich Svistkov Institute of Continuous Media Mechanics UB RAS
  • Lyudmila Andreevna Komar Institute of Continuous Media Mechanics UB RAS
  • Vladimir Vasilievich Shadrin Institute of Continuous Media Mechanics UB RAS
  • Viktor Nikolaevich Terpugov Perm State University

DOI:

https://doi.org/10.7242/1999-6691/2016.9.3.29

Keywords:

Mullins effect, rubber softening, hyperelastic material, Ogden-Roxburgh model, car tire, finite-element method, computational experiment

Abstract

The paper reports on a study of the influence of the Mullins softening effect on changes in the stress fields of a rotating car wheel under acceleration and braking conditions. In our opinion, this effect has received little attention in tire industry until recently. Computer modeling of car tire softening is a complex mathematical problem. Therefore, we have developed an algorithm to evaluate changes in the stress-strain of the wheel of the moving car taking into account the Mullins effect. With the algorithm proposed one can study the softening effect in different points of the tire during the first turn of a wheel under acceleration conditions. The results of numerical simulations demonstrate that the softening effect should be taken into account even when developing a simplified model of a car wheel, in which the tire material is considered as isotropic, and the model tire has a simpler geometry than the real tire. It has been found that the deformation of the lateral surface of the tire calculated with the Mullins effect is significantly higher than the deformation obtained in calculations where this effect has been ignored. The hyperelastic fourth-order Ogden model is applied to describe the mechanical properties of an elastomeric matrix of the tire. The degree of softening is evaluated in terms of the Ogden-Roxburgh model. Constants for the model proposed were determined during the cyclic tension test interrupted every 30 minutes after reaching a 5% deformation of the tire.

Downloads

Download data is not yet available.

References

Peckovskaa K.A. Saza kak usilitel’ kaucuka. - M.: Himia, 1968. - 214 s.
2. Krauss G. Reinforcement of elastomers by carbon-black // Rubber. Chem. Technol. - 1978. - Vol. 51, no. 2. - P. 297-324. DOI
3. Kuperman F.E. K voprosu o mehanike usilenia kaucukov tehuglerodom // Materialy 24-go simpoziuma <>. - M.: OOO <>, 2013. - S. 171-190.
4. Mullins L., Tobin N.R. Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler reinforced vulcanized rubber // J. Appl. Polym. Sci. - 1965. - Vol. 9, no. 9. - P. 2993-3009. DOI
5. Harwood J.A.C., Mullins L., Payne A.R. Stress softening in natural rubber vulcanizates. Part II. Stress softening effects in pure gum and filler loaded rubbers // J. Appl. Polym. Sci. - 1965. - Vol. 9, no. 9. - P. 3011-3021. DOI
6. Obsaa himiceskaa tehnologia / Pod red. S.I. Vol’fkovica, A.P. Egorova, V.K. Kuskova. - M.: Akademia, 1946. - T. 2. - S. 407.
7. Passera S., Baylon K., Fiorentino A., Ceretti E., Elias A., Rodriguez C. A preliminary material model to predict stress softening and permanent set effects of human vaginal tissue // Procedia Engineering. - 2013. - Vol. 59. - P. 150-157. DOI
8. Rachid D., Mohand O. On the numerical simulation of damage for the visco-hyperelastic anisotropic behavior of the biomaterials in cyclic loading: relationship of the Mullins effect and fibers reinforcement // Procedia Engineering. - 2015. - Vol. 101. - P. 126-134. DOI
9. Chai A.B., Verron E., Andriyana A., Johan M.R. Mullins effect in swollen rubber: Experimental investigation and constitutive modeling // Polym. Test. - 2013. - Vol. 32, no. 4. - P. 748-759. DOI
10. Safadi M.M., Rubin M.B. Modeling rate-independent hysteresis in large deformations of preconditioned soft tissues // Int. J. Solids Struct. - 2014. - Vol. 51, no. 18. - P. 3265-3272. DOI
11. Machado G., Chagnon G., Favier D. Theory and identification of a constitutive model of induced anisotropy by the Mullins effect // J. Mech. Phys. Solids. - 2014. - Vol. 63. - P. 29-39. DOI
12. Lin S., Zhou Y., Zhao X. Designing extremely resilient and tough hydrogels via delayed dissipation // Extreme Mechanics Letters. - 2014. - Vol. 1. - P. 70-75. DOI
13. Martinez J.R., Le Cam J.-B., Balandraud X., Toussaint E, Caillard J. New elements concerning the Mullins effect: A thermomechanical analysis // Eur. Polym. J. - 2014. - Vol. 55. - P. 98-107. DOI
14. Zhang T., Lin S., Yuk H., Zhao X. Predicting fracture energies and crack-tip fields of soft tough materials // Extreme Mechanics Letters. - 2015. - Vol. 4. - P. 1-8. DOI
15. Loo Mee S., Andriyana A., Verron E., Chagnon G., Afifi A.M. Experimental investigation of the Mullins effect in swollen elastomers // 8th European Conference on Constitutive Models for Rubbers, June 2013, San Sebastian, Spain. - P. 437-442.
16. Diani J., Brieu M., Batzler K., Zerlauth P. Effect of the Mullins softening on mode I fracture of carbon-black filled rubbers // Int. J. Fracture. - 2015. - Vol. 194, no. 1. - P. 11-18. DOI
17. Buffel B., Desplentere F., Bracke K., Verpoest I. Modelling open cell-foams based on the Weaire-Phelan unit cell with a minimal surface energy approach // Int. J. Solids Struct. - 2014. - Vol. 51, no. 19-20. - P. 3461-3470. DOI
18. Diaz R., Diani J., Gilormini P. Physical interpretation of the Mullins softening in a carbon-black filled SBR // Polymer. - 2014. - Vol. 55, no. 19. - P. 4942-4947. DOI
19. Dargazany R., Itskov M. Constitutive modeling of Mullins effect and cyclic Stress softening in filled elastomers // Phys. Rev. E. - 2013. - Vol. 88. - 012602. DOI
20. Cantournet S., Desmorat R., Besson J. Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model // Int. J. Solids Struct. - 2009. - Vol. 46, no. 11-12. - P. 2255-2264. DOI
21. Chai A.B., Verron E., Andriyna A., Johan M.R. Mullins effect in swollen rubber: Experimental investigation and constitutive modelling // Polym. Test. - 2013. - Vol. 32, no. 4. - P. 748-759. DOI
22. Sadrin V.V. Vosstanovlenie mehaniceskih svojstv rezin v rezul’tate termostatirovania // VMS. Seria B. - 2005. - T. 47, No 7. - C. 1237-1240.
23. Sadrin V.V., Kornev U.V., Gamlickij U.A. Izmenenie svojstv reziny v rezul’tate modifikacii poverhnosti castic uglerodnogo napolnitela // Mehanika kompozicionnyh materialov i konstrukcij. - 2009. - T. 15, No 3. - S. 401-410.
24. Ogden R.W. Non-linear elastic deformations. New York: Dover Publications, 1998.
25. Mullins L. Engineering with rubber // Rubber Chem. Technol. - 1986. - Vol. 59, no. 3. - P. 69-83. DOI
26. Diani J., Fayolle B., Gilormini P. A review on the Mullins effect // Eur. Polym. J. - 2009. - Vol. 45, no. 3. - P. 601-612. DOI
27. Ogden R.W., Roxburgh D.G. A pseudo-elastic model for the Mullins effect in filled rubber // P. Roy. Soc. Lond. A Mat. - 1999. - Vol. 455. - P. 2861-2877. DOI

Published

2016-09-30

Issue

Section

Articles

How to Cite

Sokolov, A. K., Svistkov, A. L., Komar, L. A., Shadrin, V. V., & Terpugov, V. N. (2016). Stress softening effect on changes in the stress-strain state of a tire. Computational Continuum Mechanics, 9(3), 358-365. https://doi.org/10.7242/1999-6691/2016.9.3.29