Axisymmetric oscillations of a cylindrical drop in the final volume of fluid

Authors

  • Aleksey Anatolievich Alabuzhev Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2016.9.3.26

Keywords:

cylindrical drop, ideal liquid, free oscillations, axisymmetric oscillations, forced oscillations, dynamics of contact line

Abstract

The eigen and forced oscillations of a fluid drop surrounded by an incompressible fluid in a cylindrical container of a final volume are considered. The drop has a cylindrical shape in equilibrium and is bounded axially by two parallel solid surfaces. The equilibrium contact angle is a right angle. Dynamics of the contact line is taken into account by setting an effective boundary condition derived by Hocking: velocity of the contact line is assumed to be proportional to deviation of the contact angle from the equilibrium value. This condition leads to oscillation damping, which arises from the interaction of the contact line with a solid surface. Hocking’s parameter (wetting parameter) is the proportionality coefficient in this condition. A completely pinned contact line (pinned-end edge condition) corresponds to the limiting value of Hocking’s parameter, which tends to zero. Hocking’s parameter tends to infinity in the opposite case of the fixed contact angle. The solution of the boundary value problem is found using Fourier series of Laplace operator eigenfunctions. Dependence of the eigenfrequency and damping rates on the problem parameters is investigated. It has been established that the main frequency of free oscillations can vanish at a certain value of Hocking’s parameter (so-called wetting parameter). The length of this interval depends on the ratio of height to radius of the drop. Other frequencies decrease monotonically with increasing Hocking’s parameter. The values of all frequencies increase with increasing relative radius of the drop or the radius of the vessel. Well-marked resonance effects are found in the study of forced oscillations. For the case of a pinned contact line or a fixed contact angle, the amplitude of forced oscillations grows without bound near the eigenfrequency. In other cases, the amplitude is finite. There are “anti-resonant” frequencies at which no deviation of the contact line from the equilibrium value is observed at any values of Hocking's parameter.

Downloads

Download data is not yet available.

References

Zhang L., Thiessen D.B. Capillary-wave scattering from an infinitesimal barrier and dissipation at dynamic contact lines // J. Fluid Mech. - 2013. - Vol. 719. - P. 295-313. DOI
2. Bostwick J.B., Steen P.H. Dynamics of sessile drops. Part 1. Inviscid theory // J. Fluid Mech. - 2014. - Vol. 760. - P. 5-38. DOI
3. Hocking L.M. The damping of capillary-gravity waves at a rigid boundary // J. Fluid Mech. - 1987. - Vol. 179. - P. 253-266. DOI
4. Keulegan G.H. Energy dissipation in standing waves in rectangular basins // J. Fluid Mech. - 1959. - Vol. 6. - P. 33-50. DOI
5. Lubimov D.V., Lubimova T.P., Sklaev S.V. Neosesimmetricnye kolebania polusfericeskoj kapli // MZG. - 2004. - No 6. - S. 8-20. DOI
6. Lyubimov D.V., Lyubimova T.P., Shklyaev S.V. Behavior of a drop on an oscillating solid plate // Phys. Fluids. - 2006. - Vol. 18. - 012101. DOI
7. Shklyaev S., Straube A.V. Linear oscillations of a compressible hemispherical bubble on a solid substrate // Phys. Fluids. - 2008. - Vol. 20. - 052102. DOI
8. Alabuzev A.A., Lubimov D.V. Vlianie dinamiki kontaktnoj linii na sobstvennye kolebania cilindriceskoj kapli // PMTF. - 2007. - T. 48, No 5. - S. 78-86. DOI
9. Alabuzev A.A. Povedenie cilindriceskogo puzyr’ka pod dejstviem vibracij // Vycisl. meh. splos. sred. - 2014. - T. 7, No 2. - S. 151-161. DOI
10. Alabuzev A.A., Kajsina M.I. Vlianie dvizenia linii kontakta na osesimmetricnye kolebania cilindriceskogo puzyr’ka // Vestnik PGU. Seria: Fizika. - 2015. - No 2(30). - S. 56-68.
11. Alabuzev A.A., Lubimov D.V. Vlianie dinamiki kontaktnoj linii na kolebania szatoj kapli // PMTF. - 2012. - T. 53, No 1. - S. 12-23. DOI
12. Alabuzev A.A. Vynuzdennye kolebania szatoj kapli s ucetom dvizenia kontaktnoj linii // Vestnik PGU. Seria: Fizika. - 2012. - No 4(22). - S. 7-10.
13. Borkar A., Tsamopoulus J. Boundary-layer analysis of the dynamics of axisymmetric capillary bridges // Phys. Fluids A. - 1991. - Vol. 3, no. 12. - P. 2866-2874. DOI
14. Miles J.W. The capillary boundary layer for standing waves // J. Fluid Mech. - 1991. - Vol. 222. - P. 197-205. DOI
15. Demin V.A. K voprosu o svobodnyh kolebaniah kapillarnogo mosta // MZG. - 2008. - No 4. - S. 28-37. DOI
16. Kartavyh N.N., Sklaev S.V. O parametriceskom rezonanse polucilindriceskoj kapli na oscilliruusej tverdoj podlozke // Vestnik PGU. Seria: Fizika. - 2007. - No 1(6). - S. 23-28.
17. Ivancov A.O. Akusticeskie kolebania polusfericeskoj kapli // Vestnik PGU. Seria: Fizika. - 2012. - No 3(21). - S. 16-23.
18. Alabuzev A.A., Lubimov D.V. Povedenie cilindriceskoj kapli pri mnogocastotnyh vibraciah // MZG. - 2005. - No 2. - S. 18-28. DOI
19. Hocking L.M. Waves produced by a vertically oscillating plate // J. Fluid Mech. - 1987. - Vol. 179. - P. 267-281. DOI
20. Ablett R. An investigation of the angle of contact between paraffin wax and water // Philos. Mag. - 1923. - Vol. 46, no. 272. - P. 244-256. DOI
21. Dussan V.E.B. On the spreading of liquids on solid surfaces: static and dynamic contact lines // Annu. Rev. Fluid Mech. - 1979. - Vol. 11. - P. 371-400. DOI
22. Fayzrakhmanova I.S., Straube A.V. Stick-slip dynamics of an oscillated sessile drop // Phys. Fluids. - 2009. - Vol. 21. - 072104. DOI
23. Fayzrakhmanova I.S., Straube A.V., Shklyaev S. Bubble dynamics atop an oscillating substrate: Interplay of compressibility and contact angle hysteresis // Phys. Fluids. - 2011. - Vol. 23. - 102105. DOI
24. Alabuzev A.A. Dinamika cilindriceskoj kapli s ucetom vliania gisterezisa kraevogo ugla // Vestnik PGU. Seria: Fizika. - 2012. - No 4(22). - S. 3-6.
25. Miles J.W. The capillary boundary layer for standing waves // J. Fluid Mech. - 1991. - Vol. 222. - P. 197-205. DOI
26. Ting C.-L., Perlin M. Boundary conditions in the vicinity of the contact line at a vertically oscillating upright plate: an experimental investigation // J. Fluid Mech. - 1995. - Vol. 295. - P. 263-300. DOI
27. Perlin M., Schultz W.W., Liu Z. High Reynolds number oscillating contact lines // Wave Motion. - 2004. - Vol. 40, no. 1. - P. 41-56. DOI
28. Mampallil D., Eral H.B., Staicu A., Mugele F., van den Ende D. Electrowetting-driven oscillating drops sandwiched between two substrates // Phys. Rev. E. - 2013. - Vol. 88. - 053015. DOI
29. Kumar S. Liquid transfer in printing processes: liquid bridges with moving contact lines // Annu. Rev. Fluid Mech. - 2015. - Vol. 47. - P. 67-94. DOI
30. Bostwick J.B., Steen P.H. Stability of constrained capillary surfaces // Annu. Rev. Fluid Mech. - 2015. - Vol. 47. - P. 539-568. DOI
31. Ward T., Walrath W. Electrocapillary drop actuation and fingering instability in a planar Hele-Shaw cell // Phys. Rev. E. - 2015. - Vol. 91. - 013012. DOI
32. Lord Rayleigh. On the instability of cylindrical fluid surfaces // Philos. Mag. S. 5. - 1892. - Vol. 34, no. 207. - P. 177-180. DOI
33. Plateau J.A.F. Experimental and theoretical researchers on the figures of equilibrium of a liquid mass withdrawn from the action of gravity // Ann. Rep. Smithsonian Inst. - 1863. - P. 270-285.
34. Alabuzev A.A., Kajsina M.I. Translacionnaa moda sobstvennyh kolebanij cilindriceskogo puzyr’ka // Vestnik PGU. Seria: Fizika. - 2015. - No 1(29). - S. 35-41.
35. Bjerknes V.F.K. Field of Force. - New York: Columbia University Press, 1906. - 146 p.
36. Takemura F., Takagi S., Magnaudet J., Matsumoto Y. Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid // J. Fluid Mech. - 2002. - Vol. 461. - P. 277-300. DOI

Published

2016-09-30

Issue

Section

Articles

How to Cite

Alabuzhev, A. A. (2016). Axisymmetric oscillations of a cylindrical drop in the final volume of fluid. Computational Continuum Mechanics, 9(3), 316-330. https://doi.org/10.7242/1999-6691/2016.9.3.26