Using of explicit time-central difference method for numerical simulation of dynamic behavior of elasto-plastic flexible reinforced plates

Authors

  • Andrey Petrovich Yankovskii Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

DOI:

https://doi.org/10.7242/1999-6691/2016.9.3.24

Keywords:

reinforced plates, Timoshenko theory, dynamic bending, geometric nonlinearity, elastic-plastic deformation, explicit numerical scheme, cross-type scheme

Abstract

Based on the step-wise algorithm involving central finite differences in time, a mathematical model is developed for elastic-plastic deformation of cross-reinforced plates with isotropic hardening materials of components of the composition, which at discrete points in time allows obtaining the solution of elasto-plastic problems by the explicit scheme. In Karman’s approximation, the initial-boundary value problem is formulated for the dynamic behavior of flexible, reinforced in their own plane, plates. Their weakened resistance to the transverse shear is taken into account. With one approach, the resolving equations are obtained that correspond to two variants of the Timoshenko theory. The explicit “cross” scheme was constructed for the numerical integration of the initial-boundary-value problem consistent with the incremental algorithm used to simulate the elastic-plastic behavior of reinforced medium. The calculations of the dynamic behavior are performed for elastic-plastic cylindrical bending of different reinforced fiberglass rectangular elongated plates. It is shown that the structure of the reinforcement significantly affects the elastic-plastic dynamic behavior of such structures. It has been found that the classical theory of plates is as a rule, unacceptable for carrying out the required calculations (except for very thin plates), and the first version of the Timoshenko theory gives reasonable results only in cases of relatively thin structures reinforced of low modulus fibers. It is recommended to use the second variant of the Timoshenko theory for calculation of the elastic-plastic behavior of reinforced plates, as more accurate.

Downloads

Download data is not yet available.

References

Abrosimov N.A., Bazenov V.G. Nelinejnye zadaci dinamiki kompozitnyh konstrukcij. - N. Novgorod: Izd-vo NNGU, 2002. - 400 s.
2. Nemirovskij U.V., Romanova T.P. Dinamiceskoe soprotivlenie ploskih plasticeskih pregrad. - Novosibirsk: Akademiceskoe izd-vo <>, 2009. - 311 s.
3. Karpov V.V. Procnost’ i ustojcivost’ podkreplennyh obolocek vrasenia: v 2-h castah. - M.: Fizmatlit, 2010. - C. 1. - 288 s.
4. Bazenov V.G., Pavlenkova E.V., Artem’eva A.A. Cislennoe resenie obobsennyh osesimmetricnyh zadac dinamiki uprugoplasticeskih obolocek vrasenia pri bol’sih deformaciah // Vycisl. meh. splos. sred. - 2012. - T. 5, No 4. - S. 427-434. DOI
5. Reissner E. The effect of transverse-shear deformation on the bending of elastic plates // J. Appl. Mech.-T. ASME. - 1945. - Vol. 12, no. 2. - P. 69-77.
6. Mindlin R.D. Thickness-shear and flexural vibrations of crystal plates // J. Appl. Phys. - 1951. - Vol. 22, no. 3. - P. 316-323. DOI
7. Krys’ko V.A., Kiricenko V.F., Surova N.S. Ustojcivost’ ortotropnyh mnogoslojnyh obolocek v ramkah modeli tipa Timosenko // Izvestia VUZov. Stroitel’stvo i arhitektura. - 1988. - No 7. - S. 42-45.
8. Skutin L.I. Nelinejnye deformacii i katastrofy tonkih tel. - Novosibirsk: Izd-vo SO RAN, 2014. - 139 s.
9. Malmejster A.K., Tamuz V.P., Teters G.A. Soprotivlenie polimernyh i kompozitnyh materialov. - Riga: Zinatne, 1980. - 571 s.
10. Ambarcuman S.A. Teoria anizotropnyh plastin. Procnost’, ustojcivost’ i kolebania. - M.: Nauka, 1987. - 360 s.
11. Abrosimov N.A., Elesin A.V. Obosnovanie primenimosti makroneodnorodnyh modelej v zadacah dinamiki mnogoslojnyh kompozitnyh balok // Prikladnye problemy procnosti i plasticnosti. - 1987. - S. 69-74.
12. Kulikov G.M. Termouprugost’ gibkih mnogoslojnyh anizotropnyh obolocek // MTT. - 1994. - No 2. - S. 33-42.
13. Pikul’ V.V. Mehanika obolocek. - Vladivostok: Dal’nauka, 2009. - 536 s.
14. Kompozicionnye materialy. Spravocnik / Pod red. D.M. Karpinosa. - Kiev: Naukova dumka, 1985. - 592 s.
15. Ivanov G.V., Volckov U.M., Bogul’skij I.O., Anisimov S.A., Kurguzov V.D. Cislennoe resenie dinamiceskih zadac uprugoplasticeskogo deformirovania tverdyh tel. - Novosibirsk: Sib. univ. izd-vo, 2002. - 352 s.
16. Nemirovskij U.V., Ankovskij A.P. Integrirovanie zadaci dinamiceskogo uprugoplasticeskogo izgiba armirovannyh sterznej peremennogo poperecnogo secenia obobsennymi metodami Runge-Kutty // Vycislitel’nye tehnologii. - 2004. - T. 9, No 4. - S. 77-95.
17. Nemirovskij U.V., Ankovskij A.P. Osobennosti vazkoplasticeskogo deformirovania armirovannyh plastin peremennoj tolsiny pri dejstvii nagruzok vzryvnogo tipa // Prikladnaa mehanika. - 2008. - T. 44, No 2. - S. 85-98.
18. Ankovskij A.P. Uprugoplasticeskoe deformirovanie izgibaemyh armirovannyh plastin pri oslablennom soprotivlenii poperecnomu sdvigu // Prikladnaa matematika i mehanika. - 2013. - T. 77, No 6. - S. 853-876.
19. Rihtmajer R., Morton K. Raznostnye metody resenia kraevyh zadac. - M: Mir, 1972. - 418 s.
20. Bazenov V.G., Igoniceva E.V. Nelinejnye processy udarnogo vypucivania uprugih elementov konstrukcij v vide ortotropnyh obolocek vrasenia. - N. Novgorod: Izd-vo Nizegorodskogo universiteta, 1991. - 132 s.
21. Kuz’min M.A., Lebedev D.L., Popov B.G. Procnost’, zestkost’, ustojcivost’ elementov konstrukcij. Teoria i praktikum. Rascety na procnost’ elementov mnogoslojnyh kompozitnyh konstrukcij: Uceb. posobie. - M.: Izd-vo MGTU im. N.E. Baumana, 2012. - 344 s.
22. Houlston R., DesRochers C.G. Nonlinear structural response of ship panels subjected to air blast loading // Comput. Struct. - 1987. - Vol. 26, no. 1-2. - P. 1-15. DOI
23. Zeinkiewicz O.C., Taylor R.L. The finite element method. - Oxford: Butterworth-Heinemann, 2000. - 707 p.
24. Savenkova M.I., Sesenin S.V., Zakalukina I.M. Sravnenie rezul’tatov konecno-elementnogo analiza s rezul’tatami asimptoticeskogo metoda osrednenia v zadace uprugoplasticeskogo izgiba plastiny // Vestnik MGSU. - 2013. - No 8. - S. 42-50.
25. Ankovskij A.P. Postroenie opredelausih uravnenij uprugoplasticeskogo povedenia prostranstvenno-armirovannogo metallokompozita v ramkah modeli Prandtla-Rejssa-Hilla // Problemy procnosti i plasticnosti. - 2013. - T. 75, No 3. - S. 169-177.
26. Ankovskij A.P. Opredelenie termouprugih harakteristik prostranstvenno armirovannyh voloknistyh sred pri obsej anizotropii materialov komponent kompozicii. 1. Strukturnaa model’ // Mehanika kompozitnyh materialov. - 2010. - T. 46, No 5. - S. 663-678. DOI
27. Nemirovskij U.V., Ankovskij A.P. Strukturnaa model’ mehaniki metallokompozitov // Problemy i dostizenia prikladnoj matematiki i mehaniki. K 70-letiu akademika V.M. Fomina: Cb. nauc. tr. - Novosibirsk: Parallel’, 2010. - S. 98-103.
28. Zubcaninov V.G. Mehanika processov plasticeskih sred. - M.: Fizmatlit, 2010. - 352 s.
29. Bolotin V.V. Osnovnye uravnenia teorii armirovannyh sred // Mehanika polimerov. - 1965. - No 2. - S. 27-37.
30. Hazinskij G.M. Modeli deformirovania i razrusenia metallov. - M: Naucnyj mir, 2011. - 231 s.
31. Uilkins M.L. Rascet uprugoplasticeskih tecenij // Vycislitel’nye metody v gidrodinamike / Pod red. B. Oldera, S. Fernbaha, M. Rotenberga. - M.: Mir, 1967. - S. 212-264.
32. Samarskij A.A. Teoria raznostnyh shem. - M.: Nauka, 1989. - 616 s.
33. Hakimzanov G.S., Cernyj S.G. Metody vycislenij: V 4-h castah: Uceb. posobie. - Novosibirsk: RIC NGU, 2014. - C. 4. Cislennye metody resenia zadac dla uravnenij giperboliceskogo tipa. - 207 s.
34. Malinin N.N. Prikladnaa teoria plasticnosti i polzucesti: Ucebnik dla studentov vuzov. - M.: Masinostroenie, 1975. - 400 s.
35. Spravocnik po kompozitnym materialam: V 2-h kn. / Pod red. Dz. Lubina. - M.: Masinostroenie, 1988. - Kn. 1. - 448 s.

Published

2016-09-30

Issue

Section

Articles

How to Cite

Yankovskii, A. P. (2016). Using of explicit time-central difference method for numerical simulation of dynamic behavior of elasto-plastic flexible reinforced plates. Computational Continuum Mechanics, 9(3), 279-297. https://doi.org/10.7242/1999-6691/2016.9.3.24