Мodelling of a fracture process in welded joints

Authors

  • Vladimir Dmitrievich Kurguzov Lavrentyev Institute of Hydrodynamics SB RAS
  • Nikolay Stepanovich Astapov Lavrentyev Institute of Hydrodynamics SB RAS

DOI:

https://doi.org/10.7242/1999-6691/2016.9.3.23

Keywords:

weld joint, failure criteria, plastic zone, diagram of quasibrittle fracture, finite element method, computer modeling

Abstract

A computer modelling of crack propagation in welded joints is carried out. The strength of welded joints having a crack-like defect is analyzed. The welded joint is modelled as a two-layer structured composite which contains a straight sharp internal crack in I mode. The fracture process of such a composite is described using the modified model of Leonov-Panasyuk-Dugdale. The model employs an additional parameter, equal to the diameter of the plastic zone (width of the pre-fracture zone) of the weakest material. The solid is modelled using the elastic-perfectly-plastic material model with a limited relative lengthening. The class of materials under consideration includes low-alloy steels, used in engineering structures working at temperatures below the cold brittleness temperature. The case where elastic properties of the materials coincide but the strength is different is analyzed in detail. Under conditions of a low-scale yield, where the stress field near the crack tip possesses a singular component, we suggest using a two-parametric discrete/integral strength criterion. The deformation-based fracture criterion is formulated at the tip of the real crack, whereas the force-based criterion for the normal stresses with averaging is formulated at the tip of the model crack. The length of the real and model cracks differ by the length of the pre-fracture zone. Since the welded material is weaker than the basic material, the plastic zone is localized in the weakest material. A numerical simulation of extension of plastic zones in square plates made of bi-metal is carried out for a quasistatic loading. The difference between the numerical and analytical models is that materials are analyzed which correspond to the deformation modes with both low-scale and full-scale yield of the weakest material (welded material). It is found that the results of the numerical experiments are coherent with the results obtained by the analytic model of fracture for structured materials in the crack I mode with a low-scale yield of the weakest material. The size of the plastic zone near the crack tip is estimated. Diagrams of a quasi-brittle fracture are obtained for the structured composite.

Downloads

Download data is not yet available.

References

Iton N., Glover A., Mak-Grat Dz. Osobennosti razrusenia pri izgotovlenii i ekspluatacii svarnyh konstrukcij // Mehanika razrusenia: razrusenie konstrukcij / Pod red. D. Teplina. - M.: Mir, 1980. - Vyp. 20. - S. 92-120.
2. Lin G., Meng X.-G., Cornec A., Schwalbe K.-H. The effect of strength mis-match on mechanical performance of weld joints // Int. J. Fracture. -1999. -Vol. 96, no. 1. - P. 37-54. DOI
3. Chandra N. Evaluation of interfacial fracture toughness using cohesive zone model // Compos. Part A-Appl. - 2002. - Vol. 33, no. 10. - P.1433-1447. DOI
4. Kruzic J.J., McNaney J.M., Cannon R.M., Ritchie R.O. Effects of plastic constraint on the cyclic and static fatigue behavior of metal/ceramic layered structures // Mech. Mater. - 2004. - Vol. 36, no. 1-2. - P. 57-72. DOI
5. Pirondi A., Moroni F. An investigation of fatigue failure prediction of adhesively bonded metal/metal joints // Int. J. Adhes. Adhes. - 2009. - Vol. 29, no. 8. - P. 796-805. DOI
6. Aluru K., Wen F.-L., Shen Y.-L. Direct simulation of fatigue failure in solder joints during cyclic shear // Mater. Design. - 2011. - Vol. 32, no. 4. - P. 1940-1947. DOI
7. Kim Y.-J., Schwalbe K.-H. Mismatch effect on plastic yield loads in idealised weldments: II. Heat affected zone cracks // Eng. Fract. Mech. - 2001. - Vol. 68, no. 2. - P. 183-199. DOI
8. Suknev S.V. Primenenie nelokal’nyh i gradientnyh kriteriev dla ocenki razrusenia geomaterialov v zonah koncentracii rastagivausih naprazenij // Fiz. mezomeh. - 2011. - T. 14, No 2. - S. 67-76.
9. Andreev A.V. Perspektivy ispol’zovania novyh singularnyh resenij teorii uprugosti v prikladnyh zadacah mehaniki razrusenia // XI Vserossijskij s"ezd po fundamental’nym problemam teoreticeskoj i prikladnoj mehaniki: Sb. dokladov, Kazan’, 20-24 avgusta 2015 g. - Kazan’: Izd-vo Kazan. un-ta, 2015. - S. 154-156.
10. Belov P.A. Gradientnye teorii uprugosti. Zacem nuzny sloznye i ocen’ sloznye modeli // XI Vserossijskij s"ezd po fundamental’nym problemam teoreticeskoj i prikladnoj mehaniki: Sb. dokladov, Kazan’, 20-24 avgusta 2015 g. - Kazan’: Izd-vo Kazan. un-ta, 2015. - S. 427-428.
11. Bibosinov A.Z., Iskakbaev A.I., Bekbautov B.E. Modelirovanie i issledovanie zony plasticnosti vokrug tresiny Griffitsa // XI Vserossijskij s"ezd po fundamental’nym problemam teoreticeskoj i prikladnoj mehaniki: Sb. dokladov, Kazan’, 20-24 avgusta 2015 g. - Kazan’: Izd-vo Kazan. un-ta, 2015. - S. 472-474.
12. Istyrakov I.S., Arullin R.R. Razvitie tresin v polyh obrazcah pri rastazenii i krucenii // XI Vserossijskij s"ezd po fundamental’nym problemam teoreticeskoj i prikladnoj mehaniki: Sb. dokladov, Kazan’, 20-24 avgusta 2015 g. - Kazan’: Izd-vo Kazanskogo un-ta, 2015. - S. 1641-1644.
13. Glagolev V.V., Devatova M.V., Markin A.A. Model’ tresiny poperecnogo sdviga // PMTF. - 2015. - T. 56, No 4. - S. 182-192. DOI
14. Smirnov S.V., Veretennikova I.A., Vicuzanin D.I. Modelirovanie rassloenia pri plasticeskoj deformacii bimetalliceskogo materiala, polucennogo svarkoj vzryvom // Vycisl. meh. splos. sred. - 2014. - T. 7, No 4. - S. 398-411. DOI
15. Kurguzov V.D., Kornev V.M., Astapov N.S. Model’ razrusenia bimateriala pri rassloenii. Cislennyj eksperiment // Mehanika kompozicionnyh materialov i konstrukcij. - 2011. - T. 17, No 4. - S. 462-473.
16. Kornev V.M., Astapov N.S. Model’ razrusenia svarnogo soedinenia pri rassloenii // Mehanika kompozicionnyh materialov i konstrukcij. - 2012. - T. 18, No 2. - S. 213-225.
17. Kurguzov V.D., Astapov N.S., Astapov I.S. Model’ razrusenia kvazihrupkih strukturirovannyh materialov // PMTF. - 2014. - T. 55, No 6. - S. 173-185. DOI
18. Kornev V.M., Kurguzov V.D. Dostatocnyj diskretno-integral’nyj kriterij procnosti pri otryve // PMTF. - 2001. - T. 42, No 2. - S. 161-170. DOI
19. Kornev V.M., Kurguzov V.D. Dostatocnyj kriterij razrusenia v slucae sloznogo naprazennogo sostoania pri neproporcional’nom deformirovanii materiala v zone predrazrusenia // PMTF. - 2010. - T. 51, No 6. - S. 153-163. DOI
20. Leonov M.A., Panasuk V.V. Razvitie mel’cajsih tresin v tverdom tele // Prikladnaa mehanika. - 1959. - T. 5, No 4. - S. 391-401.
21. Dugdale D.S. Yielding of steel sheets containing slits // J. Mech. Phys. Solids. - 1960. - Vol. 8, no. 2. - P. 100-104. DOI
22. Panasuk V.V., Andrejkiv A.E., Parton V.Z. Osnovy mehaniki razrusenia materialov. - Kiev: Naukova dumka, 1988. - 488 c.
23. Astaf’ev V.I., Radaev U.N., Stepanova L.V. Nelinejnaa mehanika razrusenia. - Samara: Izd-vo <>, 2001. - 632 c.
24. Matvienko U.G. Modeli i kriterii mehaniki razrusenia. - M.: Fizmatlit, 2006. - 328 s.
25. Savruk M.P. Koefficienty intensivnosti naprazenij v telah s tresinami // Mehanika razrusenia i procnost’ materialov / Pod obs. red. V.V. Panasuka. - Kiev: Naukova dumka, 1988. - T. 2. - 619 c.
26. Kurguzov V.D. Vybor parametrov setki konecnyh elementov pri modelirovanii rosta tresin gidrorazryva // Vycisl. meh. splos. sred. - 2015. - T. 8, No 3. - S. 254-263. DOI
27. Korobejnikov S.N. Nelinejnoe deformirovanie tverdyh tel. - Novosibirsk: Izd-vo SO RAN, 2000. - 262 c.
28. MARC Users Guide. Vol. A. - Santa Ana (CA): MSC.Software Corporation, 2015. - 943 p.
29. Pestrikov V.M., Morozov E.M. Mehanika razrusenia. Kurs lekcij. - SPb.: COP Professia, 2012. - 552 c.
30. Suknev S.V., Novopasin M.D. Opredelenie lokal’nyh mehaniceskih svojstv materialov // DAN. - 2000. - T. 373, No 1. - S. 48-50.
31. Novopasin M.D., Suknev S.V. Gradientnye kriterii predel’nogo sostoania // Vestnik SamGU. - 2007. - No 4(54). - S. 316-335.

Published

2016-09-30

Issue

Section

Articles

How to Cite

Kurguzov, V. D., & Astapov, N. S. (2016). Мodelling of a fracture process in welded joints. Computational Continuum Mechanics, 9(3), 264-278. https://doi.org/10.7242/1999-6691/2016.9.3.23