Тurbulent natural convection modeling in enclosed tall cavities

Authors

  • Vasiliy Mikhailovich Goloviznin Lomonosov Moscow State University
  • Ivan Aleksandrovich Korotkin Nuclear Safety Institute RAS
  • Sergey Aleksandrovich Finogenov Nuclear Safety Institute RAS

DOI:

https://doi.org/10.7242/1999-6691/2016.9.3.22

Keywords:

thermal convection, turbulent flows, incompressible liquid

Abstract

In our previous work on the parameter-free numerical method for modeling thermal convection in square cavities in a wide range of Rayleigh numbers (Computational Continuum Mechanics, 2015, vol. 8, no. 1, pp. 60-70), it was shown that using eddy-resolving parameter-free CABARET scheme for solution of both two and three dimensional Davis’ test leads to surprisingly good agreement of computational results on the coarse grids (20×20) and (20×20×20) with experimental results and accurate computations for Rayleigh numbers up to 10^14. Current work is devoted to sensitivity analysis of this phenomenon in terms of cavity form variation from cubical to highly stretched. Therefore, the computational regions with the aspect ratio 1:4, 1:10, and 1:28.6 were considered. Comparison of CABARET scheme results with the experimental data (for the aspect ratio 1:28,6), DNS results (for the ratio 1:4), and empirical relation (for the ratio 1:10) is presented. In all the cases CABARET method showed good agreement of integral parameters of the flow with the results of other authors. For CABARET calculations notably coarse grids were used with refining to the walls of the region. It is shown that acceptable computation accuracy on the extremely coarse grids is achieved for the aspect ratio up to 1:10. For the higher aspect ratio and the given accuracy the number of computational cells significantly grows

Downloads

Download data is not yet available.

References

Garbaruk A.V., Strelec M.H., Sur M.L. Modelirovanie turbulentnosti v rascetah sloznyh tecenij. - SPb: Izd-vo Politehn. un-ta, 2012. - 88 s.
2. Goloviznin V.M., Glotov V.U., Danilin A.V., Korotkin I.A., Karabasov S.A. Modelirovanie turbulentnyh tecenij po sheme <> v dvuhmernoj i trehmernoj neszimaemoj zidkosti / Sb. Fundamental’nye problemy modelirovania turbulentnyh tecenij i dvuhfaznyh tecenij. - Moskva: Komtehprint, 2012. - T. 3. - S. 113-185.
3. Goloviznin V.M., Korotkin I.A., Finogenov S.A. Besparametriceskij cislennyj metod dla rasceta termokonvekcii v pramougol’nyh kavernah v sirokom diapazone cisel Relea // Vycisl. meh. splos. sred. - 2015. - T. 8, No 1. - S. 60-70. DOI
4. Asfandiarov D.G., Goloviznin V.M., Finogenov A.S. Besparametriceskij metod rasceta turbulentnogo tecenia v ploskom kanale v sirokom diapazone cisel Rejnol’dsa // ZVMMF. - 2015. - T. 55, No 9. - S. 1545-1558. DOI
5. Goloviznin V.M., Zajcev M.A., Karabasov S.A., Korotkin I.A. Novye algoritmy vycislitel’noj gidrodinamiki dla mnogoprocessornyh vycislitel’nyh kompleksov. - M.: Izd-vo Moskovskogo universiteta, 2013. - 472 s.
6. De Vahl Davis G. Natural convection of air in a square cavity: A bench mark numerical solution // Int. J. Numer. Meth. Fl. - 1983. - Vol. 3, no. 3. - P. 249-264. DOI
7. Trias F.X., Gorobets A., Soria M., Oliva A. Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 1011 - Part I: Numerical methods and time-averaged flow // Int. J. Heat Mass Tran. - 2010. - Vol. 53, no. 4. - P. 665-673. DOI
8. Trias F.X., Verstappen R.W.C.P., Gorobets A., Soria M., Oliva A. Parameter-free symmetry-preserving regularization modeling of a turbulent differentially heated cavity // Computers & Fluids. - 2010. - Vol. 39, no. 10. - P. 1815-1831. DOI
9. Kutateladze S.S. Osnovy teorii teploobmena. - M.: Atomizdat, 1979. - 416 s.
10. Betts P.L., Bokhari I.H., Experiments on turbulent natural convection in an enclosed tall cavity // Int. J. Heat Fluid Fl. - 2000. - Vol. 21, no. 6. - P. 675-683. DOI
11. Dafa’Alla A.A., Betts P.L. Experimental study of turbulent natural convection in a tall air cavity // Exp. Heat Transfer. - 1996. - Vol. 9, no. 2. - P. 165-194. DOI
12. ERCOFTAC, European research community on flow, turbulence and combustion. http://www.ercoftac.org/ (data obrasenia: 17.06.2016).
13. Mergui S., Penot F., Tuhault J.L. Experimental natural convection in an air-filled square cavity at Ra = 1.7·109 // Proc. of the Eurotherm Seminar no. 22, Editions Europeenees Thermiques et Industrie, Paris, 1993. - P. 97-108.
14. Tian Y. Low turbulence natural convection in an air filled square cavity / PhD thesis. - UK, London: South Bank University, 1997.
15. Le Quere P., de Alziary R.A. Transition to unsteady natural convection of air in differentially heated cavities // Proc. of the Fourth International Conference on Numerical Methods in Laminar and Turbulent Flow, Swansea, Pineridge Press, 1985. - P. 841.
16. Kuznecov U.A. Vycislitel’nye metody v podprostranstvah // Vycislitel’nye processy i sistemy / Pod. red. G.I. Marcuka. - Vyp. 2. - M.: Nauka, 1985. - C. 265-350.
17. Kuznecov U.A., Finogenov S.A. Paket programm dla resenia ellipticeskih zadac s razdelausimisa peremennymi // Cislennye metody i programmnoe obespecenie. - M.: IVM AN SSSR, 1990. - S. 95-105.
18. Bokhari I.H. Turbulent natural convection in a tall cavity / PhD thesis. - University of Manchester: UMIST, 1996.
19. Ince N.Z., Launder B.E. On the computation of buoyancy-driven turbulent flows in rectangular enclosures // Int. J. Heat Fluid Fl. - 1989. - Vol. 10, no. 2. - P. 110-117. DOI

Published

2016-09-30

Issue

Section

Articles

How to Cite

Goloviznin, V. M., Korotkin, I. A., & Finogenov, S. A. (2016). Тurbulent natural convection modeling in enclosed tall cavities. Computational Continuum Mechanics, 9(3), 253-263. https://doi.org/10.7242/1999-6691/2016.9.3.22