DEVELOPMENT AND NUMERICAL IMPLEMENTATION OF ONE-DIMENSIONAL PHENOMENOLOGICAL MODEL FOR PHASE DEFORMATION IN SHAPE MEMORY ALLOYS

Authors

  • Ksenia Alekseevna Tikhomirova Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2016.9.2.17

Keywords:

one-dimensional phenomenological model, shape memory alloys, martensitic transformation, non-monotonic shape memory, phase deformation, structural deformation

Abstract

The paper is devoted to the development of a one-dimensional phenomenological model for phase and structural deformations in shape memory alloys. Phase deformation is reckoned as the length change in a chain of structural elements working in series: spherical austenitic and elongated martensitic elements. Martensitic elements are formed from the austenitic ones during the forward phase transition caused by cooling or loading and become the austenitic ones again after the reverse transition. A rotation angle of the martensitic element related to the longitudinal axis of the chain is determined by macroscopic stress acting at the moment of the element origination and characterizes the extent of the martensite orientation according to the acting stress. A remembering of a martensitic element rotation angle at the moment of its origination under forward transformation and its subsequent reproduction during reverse transformation allow taking into account the loading history and with the use of the universal approach describe several phenomena caused by martensitic transformation. Structural deformation is considered as a change in the rotation angle of the martensitic element due to the changed external stress. Total system deformation is determined by summing the elastic, phase and thermal components. A method of the model constants identification on the basis of macroscopic experimental data is suggested. The following experiments are needed for this purpose: forward transition under constant tension/compression load (several tests under different loads) and forward transition without any load (a dilatation expansion case). Several examples of the model numerical implementation for different cases are given: the shape memory effect, the forward transformation under a stepwise changing load, and reverse shape memory, taking into account the structural deformation occurring at the time of the load sign change. For some examples, a comparison with experimental data and with the results obtained by another model is given.

Downloads

Download data is not yet available.

References

Brecko T. Effekt pamati formy i ostatocnye naprazenia // ZTF. - 1996. - T. 66, No 11. - S. 72-78.
2. Volkov A.E. Mikrostrukturnoe modelirovanie deformacii splavov pri povtorausihsa martensitnyh prevraseniah // Izvestia RAN. Seria fiziceskaa. - 2002. - T. 66, No 9. - S. 1290-1297.
3. Volkov A.E., Evard M.E., Kurzeneva L.N., Lihacev V.A., Saharov V.U., Usakov V.V. Matematiceskoe modelirovanie martensitnoj neuprugosti i effektov pamati formy // ZTF. - 1996. - T. 66, No 11. - S. 3-35.
4. Lihacev V.A., Malinin V.G. Strukturno-analiticeskaa teoria procnosti. - SPb.: Nauka, 1993. - 470 s.
5. Movcan A.A., Movcan I.A. Odnomernaa mikromehaniceskaa model’ nelinejnogo deformirovania splavov s pamat’u formy pri pramom i obratnom termouprugih prevraseniah // Mehanika kompozicionnyh materialov i konstrukcij. - 2007. - T. 13, No 3. - S. 297-322.
6. Huang M., Gao X., Brinson L.C. A multivariant micromechanical model for SMAs Part 2. Polycrystal model // Int. J. Plasticity. - 2000. - Vol. 16, no. 10-11. - P. 1371-1390. DOI
7. Manchiraju S., Anderson P.M. Coupling between martensitic phase transformations and plasticity: a microstructure-based finite element model // Int. J. Plasticity. - 2010. - Vol. 26, no. 10. - P. 1508-1526.
8. Patoor E., Lagoudas D.C., Entchev P.B., Brinson L.C., Gao X. Shape memory alloys, Part I: General properties and modeling of single crystals // Mech. mater. - 2006. - Vol. 38, no. 5-6. - P. 391-429. DOI
9. Thamburaja P., Pan H., Chau F.S. The evolution of microstructure during twinning: Constitutive equations, finite-element simulations and experimental verification // Int. J. Plasticity. - 2009. - Vol. 25, no. 11. - P. 2141-2168. DOI
10. Wang X.M., Xu B.X., Yue Z.F. Micromechanical modelling of the effect of plastic deformation on the mechanical behaviour in pseudoelastic shape memory alloys // Int. J. Plasticity. - 2008. - Vol. 24, no. 8. - P. 1307-1332. DOI
11. Yu C., Kang G., Kan Q. Crystal plasticity based constitutive model of NiTi shape memory alloy considering different mechanisms of inelastic deformation // Int. J. Plasticity. - 2014. - Vol. 54. - P. 132-162. DOI
12. Brocca M., Brinson L.C., Bazant Z.P. Three-dimensional constitutive model for shape memory alloys based on microplane model // J. Mech. Phys. Solids. - 2002. - Vol. 50, no. 5. - P. 1051-1077. DOI
13. Peng X., Chen B., Chen X., Wang J., Wang H. A constitutive model for transformation, reorientation and plastic deformation of shape memory alloys // Acta Mech. Solida Sin. - 2012. - Vol. 25, no. 3. - P. 285-298. DOI
14. Zaki W., Zamfir S., Moumni Z. An extension of the ZM model for shape memory alloys accounting for plastic deformation // Mech. mater. - 2010. - Vol. 42, no. 3. - P. 266-274. DOI
15. Zhou B. A macroscopic constitutive model of shape memory alloy considering plasticity // Mech. Mater. - 2012. - Vol. 48. - P. 71-81. DOI
16. Chemisky Y., Duval A., Patoor E., Zineb T.B. Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation // Mech. mater. - 2011. - Vol. 43, no. 7. - P. 361-376. DOI
17. Panico M., Brinson L.C. A three-dimensional phenomenological model for martensite reorientation in shape memory alloys // J. Mech. Phys. Solids. - 2007. - Vol. 55. - No. 11. - P. 2491-2511. DOI
18. Misustin I.V., Movcan A.A. Modelirovanie fazovyh i strukturnyh prevrasenij v splavah s pamat’u formy, proishodasih pod dejstviem nemonotonno menausihsa naprazenij // MTT. - 2014. - No 1. - S. 37-53. DOI
19. Movcan A.A., Movcan I.A. Model’ nelinejnogo deformirovania splavov s pamat’u formy v aktivnyh processah pramogo prevrasenia i strukturnogo perehoda // Mehanika kompozicionnyh materialov i konstrukcij. - 2008. - T. 14, No 1. - S. 75-87.
20. Muller C., Bruhns O.T. A thermodynamic finite-strain model for pseudoelastic shape memory alloys // Int. J. Plasticity. - 2006. - Vol. 22, no. 9. - P. 1658-1682. DOI
21. Sedlak P., Frost M., Benesova B., Ben Zineb T., Sittner P. Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings // Int. J. Plasticity. - 2012. - Vol. 39. - P. 132-151. DOI
22. Shape memory alloys: modeling and engineering applications / Ed. by Lagoudas D.C. - New York: Springer Science & Business Media, 2008. - 429 p. DOI
23. Mehrabi R., Andani M.T., Elahinia M., Kadkhodaei M. Anisotropic behavior of superelastic NiTi shape memory alloys; an experimental investigation and constitutive modeling // Mech. Mater. - 2014. - Vol. 77. - P. 110-124. DOI
24. Movcan A.A., Selymagin P.V., Kazarina S.A. Opredelausie uravnenia dla dvuhetapnyh termouprugih fazovyh prevrasenij // PMTF. - 2001. - T. 42, No 5. - S. 152-160.
25. Movcan A.A., Kazarina S.A. Materialy s pamat’u formy kak ob"ekt mehaniki deformiruemogo tverdogo tela: eksperimental’nye issledovania, opredelausie sootnosenia, resenie kraevyh zadac // Fiz. mezomeh. - 2012. - T. 15, No 1. - S. 105-116. DOI
26. Vejman S.M. Deformacia, mehanizm avlenia i drugie harakteristiki splavov s effektom zapominania formy // Effekt pamati formy v splavah / Pod red. V.A. Zajmovskogo. - M.: Metallurgia, 1979. - S. 9-35. DOI
27. Kuz’min S.L., Lihacev V.A., Tospulatov C.X. Effekt reversivnoj pamati formy pri znakoperemennom deformirovanii // Fizika metallov i metallovedenie. - 1986. - T. 61, No 13. - S. 79-85.
28. Belaev S.P., Ermolaev V.A., Kuz’min S.L., Lihacev V.A., Cunareva E.N. Effekt reversivnoj obratimoj pamati formy v splavah na osnove nikelida titana // Fizika metallov i metallovedenie. - 1988. - T. 66, No 5. - S. 926-934.
29. Belaev S.P., Kuz’min S.L., Lihacev V.A., Rogacevskaa M.U. Modelirovanie processov reversivnogo formoizmenenia v TiNiFe // Fizika metallov i metallovedenie. - 1989. - T. 68, No 3. - S. 617-619.
30. Elibol C., Wagner M.F.-X. Investigation of the stress-induced martensitic transformation in pseudoelastic NiTi under uniaxial tension, compression and compression-shear // Mat. Sci. Eng. A-Struct. - 2015. - Vol. 621. - P. 76-81. DOI
31. Yoo Y.-I., Kim Y.-J., Shin D.-K., Lee J.-J. Development of martensite transformation kinetics of NiTi shape memory alloys under compression // Int. J. Solids Struct. - 2015. - Vol. 64. - P. 51-61. DOI
32. Matveenko V.P., Smetannikov O.U., Trufanov N.A., Sardakov I.N. Termomehanika polimernyh materialov v usloviah relaksacionnogo perehoda. - M.: Fizmatlit, 2009. - 176 s.
33. Movcan A.A., Movcan I.A., Sil’cenko L.G. Mikromehaniceskaa model’ nelinejnogo deformirovania splavov s pamat’u formy pri fazovyh i strukturnyh prevraseniah // MTT. - 2010. - No 3. - S. 118-130. DOI
34. Rogovoj A.A., Stolbova O.S. Modelirovanie termomehaniceskih processov v polimerah s pamat’u formy pri konecnyh deformaciah // PMTF. - 2015. - T. 56, No 6. - S. 143-157. DOI
35. Malygin G.A. Razmytye martensitnye perehody i plasticnost’ kristallov s effektom pamati formy // UFN. - 2001. - T. 171, No 2. - S. 187-212. DOI
36. Andronov I.N., Bogdanov N.P., Severova N.A., Tarsin A.V. Metod kolicestvennogo opisania zavisimosti modula Unga nikelida titana ot temperatury // Izvestia Komi NC UrO RAN. - 2013. - No 3(15). - C. 87-90.
37. Movcan A.A., Czo T.A. Resenie nacal’no-kraevyh zadac o pramom i obratnom prevrasenii v ramkah nelinejnoj teorii deformirovania splavov s pamat’u formy // Mehanika kompozicionnyh materialov i konstrukcij. - 2007. - T. 13, No 4. - S. 452-468.
38. Movcan A.A. Analiticeskoe resenie zadac o pramom i obratnom prevrasenii dla splavov s pamat’u formy // MTT. - 1996. - No 4. - S. 136-144.
39. Movcan A.A., Davydov V.V. Inkremental’nye opredelausie sootnosenia dla ob"emnoj doli martensitnoj fazy v splavah s pamat’u formy // Mehanika kompozicionnyh materialov i konstrukcij. - 2010. - T. 16, No 5. - S. 653-661.
40. Movcan A.A. Vybor approksimacii diagrammy perehoda i modeli isceznovenia kristallov martensita dla splavov s pamat’u formy // PMTF. - 1995. - T. 36, No 2. - S. 173-181.
41. Sutkin A.S. Modeli materialov s pamat’u formy pri konecnyh deformaciah / Diss... kand. fiz.-mat. nauk: 01.02.04. - M., MGU, 2011. - 92 s.

Published

2016-06-30

Issue

Section

Articles

How to Cite

Tikhomirova, K. A. (2016). DEVELOPMENT AND NUMERICAL IMPLEMENTATION OF ONE-DIMENSIONAL PHENOMENOLOGICAL MODEL FOR PHASE DEFORMATION IN SHAPE MEMORY ALLOYS. Computational Continuum Mechanics, 9(2), 192-206. https://doi.org/10.7242/1999-6691/2016.9.2.17