Mathematical modeling of hydrate formation in a reservoir saturated with snow by cold gas injection

Authors

  • Vladislav Shaikhulagzamovich Shagapov Institute of Mechanics and Engineering, Kazan Science Center RAS
  • Angelina Sergeevna Chiglintseva Birsky Branch of Bashkir State University
  • Aleksey Aleksandrovich Rusinov Birsky Branch of Bashkir State University

DOI:

https://doi.org/10.7242/1999-6691/2016.9.2.15

Keywords:

gas hydrate, injection of methane into the reservoir, cold gas, snow saturated gas-bearing reservoir, equilibrium conditions of gas injection, self-similar solution, shooting method

Abstract

This paper considers the problem of injection of cold gas into the reservoir saturated in the initial state with snow and gas, which is accompanied by hydrate formation. The proposed mathematical model assumes that, depending on the initial state of the system “snow + gas” and the intensity of gas injection, different characteristic zones may be observed in the filtering zone “gas + hydrate”, “gas + hydrate + snow”, “gas + snow”. In order to identify the characteristics of hydrate formation in the equilibrium mode, the initial parameters reflecting the reservoir and gas conditions are chosen on the line of phase equilibrium of the system “gas + snow + hydrate”. A diffusivity equation is obtained in self-coordinates, and its solution is reduced to the solution of two ordinary differential equations of the first order. Numerical implementation is carried out using the fourth-order Runge-Kutta method and the shooting method. Similarity solutions describing the distribution of basic parameters (pressure and temperature fields, saturation of phases) in the reservoir are constructed. The condition for minimum heating of a “gas + snow + hydrate” system that provides a complete transition of snow to the hydration state is derived. It is shown that the complete hydrate formation and partial hydrate formation (depending on the initial state of the reservoir and the parameters determining gas injection) modes are possible in the volume region and on the front surface. It is also established that the greater is the initial saturation of the reservoir with snow, the more intensive is the process of hydrate formation and the smaller is the length of the heated zone. Simulations yield a characteristic value for the initial saturation of the reservoir with snow at which, depending on the value of heating the system “gas + hydrate + snow”, there may take place a zone saturated with a hydrate only.

Downloads

Download data is not yet available.

References

Jadhawar P., Mohammadi A.H., Yang J., Tohidi B. Subsurface carbon dioxide storage through clathrate hydrate formation // Advances in the Geological Storage of Carbon Dioxide. Nato Science Series. - 2006. - Vol. 65. - P. 111-126. DOI
2. Nesterov A.N. Kinetika i mehanizmy gidratoobrazovania gazov v prisutstvii poverhnostno-aktivnyh vesestv / Diss.. d-ra him. nauk: 02.00.04. - Tumen’, Institut kriosfery Zemli SO RAN, 2006. - 280 s.
3. Makogon U.F. Gidraty prirodnyh gazov. - M.: Nedra, 1974. - 208 s.
4. Istomin V.A., Akusev V.S. Gazovye gidraty v prirodnyh usloviah. - M.: Nedra, 1992. - 236 s.
5. Sloan E.D., Koh C.A. Clathrate hydrates of natural gases. - CRC Press, Taylor & Francis group, 2008. - 119 p.
6. Sagapov V.S., Ciglinceva A.S., Rusinov A.A. O migracii puzyr’kov v usloviah obrazovania gidrata // PMTF. - 2015. - T. 56, No 2. - S. 43-52. DOI
7. Lubimova T.P., Ciberkin K.B. Modelirovanie dissociacii zerna gidrata metana v poristoj matrice // Vycisl. meh. splos. sred. - 2013. - T. 6, No 1. - S. 119-124. DOI
8. Cuvilin E.M., Kozlova E.V. Issledovania formirovania merzlyh gidratosoderzasih porod // Kriosfera Zemli. - 2005. - T. IX, No 1. - S. 73-80.
9. Chuvilin E.M., Kozlova E.V., Makhonina N.A., Yakushev V.S. Experimental investigation of gas hydrate and ice formation in methane saturated sediments // Proc. of the 8th Int. Conf. on Permafrost, 21-25 July, 2003, Zurich, Switzerland. - P. 145-150.
10. Cuvilin E.M., Gur’eva O.M. Eksperimental’noe izucenie obrazovania gidratov S02 v porovom prostranstve promerzausih i merzlyh porod // Kriosfera Zemli. - 2009. - T. XIII, No 3. - S. 70-79.
11. Sagapov V.S., Hasanov M.K., Musakaev N.G. Obrazovanie gazogidrata v poristom rezervuare, casticno nasysennom vodoj, pri inzekcii holodnogo gaza // PMTF. - 2008. - T. 49, No 3. - S. 137-150. DOI
12. Hasanov M.K., Gimaltdinov I.K., Stolpovskij M.V. Osobennosti obrazovania gazogidratov pri nagnetanii holodnogo gaza v poristuu sredu, nasysennuu gazom i vodoj // TOHT. - 2010. - T. 44, No 4. - S. 442-449. DOI
13. Sagapov V.S., Hasanov M.K., Gimaltdinov I.K., Stolpovskij M.V. Cislennoe modelirovanie obrazovania gazogidrata v poristoj srede konecnoj protazennosti pri produvke gazom // PMTF. - 2011. - T. 52, No 4. - S. 116-126. DOI
14. Hasanov M.K. Issledovanie rezimov obrazovania gazogidratov v poristoj srede, casticno nasysennoj l’dom // Teplofizika i aeromehanika. - 2015. - T. 22, No 2. - S. 255-266. DOI
15. Hasanov M.K., Dorovskaa M.S. Matematiceskaa model’ inzekcii holodnogo gaza v poristuu sredu, casticno nasysennuu l’dom // Fundamental’nye issledovania. - 2014.- No 9-4. - S. 741-746.
16. Musakaev N.G., Hasanov M.K. Frontal’naa shema obrazovania gidrata pri nagnetanii uglekislogo gaza v nasysennyj metanom i l’dom plast // XIV Vserossijskij seminar <>, priurocennyj k 75-letiu akademika RAN Fomina V.M., Novosibirsk, 2-5 noabra 2015 g. - S. 267-268.
17. Cypkin G.G. Matematiceskaa model’ inzekcii uglekislogo gaza v plast s obrazovaniem gidrata // DAN. - 2014. - T. 458, No 4. - S. 422-425. DOI
18. Cypkin G.G. Obrazovanie gidrata uglekislogo gaza pri ego inzekcii v istosennoe mestorozdenie uglevodorodov // MZG. - 2014. - No 6. - S. 101-108. DOI
19. Cypkin G.G. Tecenia s fazovymi perehodami v poristyh sredah. - M.: Fizmatlit, 2009. - 232 s.
20. Sagapov V.S., Hasanov M.K., Gimaltdinov I.K., Stolpovskij M.V. Osobennosti razlozenia gazovyh gidratov v poristyh sredah pri nagnetanii teplogo gaza // Teplofizika i aeromehanika. - 2013. - T. 20, No 3. - S. 347-354. DOI
21. Nigmatulin R.I. Dinamika mnogofaznyh sred. - M.: Nauka, 1987. - C. 1. - 464 s., C. 2. - 360 s.
22. Nurislamov O.R., Sagapov V.S. Nagnetanie gaza vo vlaznuu poristuu sredu s obrazovaniem gazogidrata // PMM. - 2009. - T. 73, No 5. - S. 809-823. DOI
23. Barenblatt G.I., Entov V.M., Ryzik V.M. Dvizenie zidkostej i gazov v prirodnyh plastah. - M.: Nedra, 1984. - 208 s.
24. Nikiforov A.I., Sadovnikov R.V., Nikiforov G.A. O perenose dispersnyh castic dvuhfaznym fil’tracionnym potokom // Vycisl. meh. splos. sred. - 2013. - T. 6, No 1. - S. 47-53. DOI
25. Durham W., Stern L., Kirby S., Circone S. Rheological comparisons and structural imaging of sI and sII end-member gas hydrates and hydrate/sediment aggregates // Proceedings of the 5th International Conference on Gas Hydrates, Trondheim, Norway, June 2005. - P. 606-613.
26. Bagherzadeh S.A., Alavi S., Ripmeester J., Englezos P. Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth // J. Chem. Phys. - 2015 . - Vol. 142. - 214701. DOI
27. Bahvalov N.S. Cislennye metody (analiz, algebra, obyknovennye differencial’nye uravnenia). - M.: Nauka, 1975. - 632 s.
28. Verzbickij V.M. Cislennye metody (matematiceskij analiz i obyknovennye differencial’nye uravnenia): Uceb. posobie dla vuzov. - M.: Vyssaa skola, 2001. - 382 s.

Published

2016-06-30

Issue

Section

Articles

How to Cite

Shagapov, V. S., Chiglintseva, A. S., & Rusinov, A. A. (2016). Mathematical modeling of hydrate formation in a reservoir saturated with snow by cold gas injection. Computational Continuum Mechanics, 9(2), 173-181. https://doi.org/10.7242/1999-6691/2016.9.2.15