Modified Сam-clay model. Theoretical foundations and numerical analysis
DOI:
https://doi.org/10.7242/1999-6691/2016.9.2.14Keywords:
Сam-clay model, plasticity, hyperelasticity, hardening, softening, cohesionAbstract
State equations and principle assumptions of a modified cam-clay model are analyzed. It is assumed that the modified cam-clay model is related to the plasticity models described by the isotropic hardening rules and closed yield surfaces. Equations of state in the elastic zone, along with models related to the hyperelastic equations of state with the exponential potential, are considered. Some generalizations of the modified cam-clay model for finite strains are performed. Works associated with the problems regarding calibration of theoretical modified cam-clay models with experimental data are reviewed. The first Clay-clay model with logarithmic surface plasticity in the critical zone was constructed in [1, 2]. Later on, the logarithmic surface plasticity was replaced by ellipsoidal one. This model is also called a modified Cam-clay model. The Cam-clay model and its modified variant belong to a class of the elastic-plastic models with isotropic hardening. It should be noted that there are also some modifications of the Cam-clay models, which take into account the possibility of modeling the Bauschinger effect by shifting surface plasticity using a combination of isotropic and kinematic hardening rules. There are a considerable number of works, in which the Cam-clay model and its modifications are used to study the behavior of various granular materials with low cohesion under monotonic or cyclic force loadings. Most of these works are devoted to uniaxial or triaxial force loading. This paper deals with analyzing the behavior of the modified Cam-Clay model under combined kinematic loadings.
Downloads
References
Roscoe K.H., Schofield A.N., Wroth C.P. On the yielding of soils // Geotechnique. - 1958. - Vol. 8, no. 1. - P. 22-53. DOI
2. Roscoe K.H., Schofield A.N. Mechanical behavior of an idealized ’wet’ clay // Proc. 2nd European Conf. Soil Mechanics and Foundation Engineering, Wiesbaden, 1963. - Vol. I. - P. 47-54.
3. Roscoe K.H., Burland J.B. On the generalized stressstrain behavior of wet clay // Engineering Plasticity / Eds. J. Heyman, F.A. Leckie. - Cambridge University Press, 1968. - P. 535-609.
4. Alawaji H., Runesson K., Sture S., Axelsson K. Implicit integration in soil plasticity under mixed control for drained and undrained response // Int. J. Numer. Anal. Met. - 1992. - Vol. 16, no. 10. - P. 737-756. DOI
5. Armero F., Perez-Foguet A. On the formulation of closest-point projection algorithms in elastoplasticity - part I: The variational structure // Int. J. Numer. Meth. Eng. - 2002. - Vol. 53, no. 2. - P. 297-329. DOI
6. Bigoni D., Hueckel T. Uniqueness and localization - I. Associative and non-associative elastoplasticity // Int. J. Solids Struct. - 1991. - Vol. 28, no. 2. - P. 197-213. DOI
7. Borja R.I., Lee S.R. Cam-Clay plasticity. Part I: Implicit integration of elasto-plastic constitutive relations // Comput. Method. Appl. M. - 1990. - Vol. 78, no. 1. - P. 49-72. DOI
8. Borja R.I., Sama K.M., Sanz P.F. On the numerical integration of three-invariant elastoplastic constitutive models // Comput. Method. Appl. M. - 2003. - Vol. 192, no. 9-10. - P. 1227-1258. DOI
9. Borja R., Tamagnini C. Cam-Clay plasticity, Part III: Extension of the infinitesimal model to include finite strains // Comput. Method. Appl. M. - 1998. - Vol. 155, no. 1-2. - P. 73-95. DOI
10. Buscarnera G., Dattola G., di Prisco C. Controllability, uniqueness and existence of the incremental response: A mathematical criterion for elastoplastic constitutive laws // Int. J. Solids Struct. - 2011. - Vol. 48, no. 13. - P. 1867-1878. DOI
11. Conti R., Tamagnini C., DeSimone A. Critical softening in Cam-Clay plasticity: Adaptive viscous regularization, dilated time and numerical integration across stress-strain jump discontinuities // Comput. Method. Appl. M. - 2013. - Vol. 258. - P. 118-133. DOI
12. Dal Maso G., DeSimone A. Quasistatic evolution for Cam-Clay plasticity: Examples of spatially homogeneous solutions // Math. Models Methods Appl. Sci. - 2009. - Vol. 19. - P. 1643-1711. DOI
13. Dal Maso G., DeSimone A., Solombrino F. Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling // Calc. Var. Partial. Dif. - 2011. - Vol. 40, no. 1. - P. 125-181. DOI
14. Dal Maso G., Solombrino F. Quasistatic evolution for Cam-Clay plasticity: The spatially homogeneous case // Networks and Heterogeneous Media. - 2010. - Vol. 5, no. 1. - P. 97-132. DOI
15. Al-Tabbaa A., Wood D.M. An experimentally based bubble model for clay // Proc. 3rd Int. Symp. Num. Models Geomech. (NUMOG III), 8-11 May, 1989, Niagara Falls, Canada. - 1989. - P. 90-99.
16. Andersen K.H. Bearing capacity under cyclic loading - offshore, along the coast, and on land // Can. Geotech J. - 2009. - Vol. 46, no. 5. - P. 513-535. DOI
17. Carter J.P., Booker J.R., Wroth C.P. A critical state soil model for cyclic loading // Soil mechanics - transient and cyclic loads / Eds. G.N. Pande, O.L. Zienkiewicz. - London: Wiley, 1982. - P. 219-252.
18. Liu J., Xia J. Experimental study on the stability of railroad silt subgrade with increasing train speed // J. Geotech. Geoenviron. Eng. - 2010. - Vol. 10.1061. - P. 833-841. DOI
19. Mroz Z. On the description of anisotropic workhardening // J. Mech. Phys. Solids. - 1967. - Vol. 15, no. 3. - P. 163-175. DOI
20. Puppala A.J., Mohammad L., Allen A. Permanent deformation characterization of subgrade soils from RLT test // J. Mater. Civ. Eng. - 1999. - Vol. 11, no. 4. - P. 274-282. DOI
21. Sangrey D.A., Castro G., Poulos S.J., France J.W. Cyclic loading of sands, silts and clays // Earthquake engineering and soil dynamics. Proc. ASCE Geotechnical Engineering Division Specialty Conference, June 19-21, 1978, Pasadena, California. - P. 836-851.
22. Selig E.T., Chang C.S. Soil failure modes in undrained cyclic loading // J. Geotech. Eng.-ASCE. - 1981. - Vol. 107, no. GT5. - P. 539-551.
23. Takahashi M., Hight D.W., Vaughan P.R. Effective stress changes observed during undrained cyclic triaxial tests on clay // Proc. Int. Symp. on Soils under Cyclic and Transient Loading / Eds. G.N. Pande, O.C. Zienkiewicz. - Balkema, Rotterdam, Netherlands, 1980. - P. 201-209.
24. Uzan J. Characterization of granular material // Transportation Research Record. - 1985. - Vol. 1022. - P. 52-59.
25. Wood D.M. Soil behaviour and critical state soil mechanics. - Cambridge University Press, 1990. - 462 p.
26. Zhou J., Gong X. Strain degradation of saturated clay under cyclic loading // Can. Geotech. J. - 2001. - Vol. 38, no. 1. - P. 208-212. DOI
27. Ni J., Indraratna B., Geng X., Carter J., Chen Y. Model of soft soils under cyclic loading // Int. J. Geomech. - 2014. - Vol. 15, no. 4. - P. 1-10. DOI
28. Shahin M.A., Loh R.B.H., Nikraz H.R. Some observations on the behaviour of soft clay under undrained cyclic loading // J. GeoEngineering. - 2011. - Vol. 6, no. 2. - P. 109-112.
29. Papuga J. A survey on evaluating the fatigue limit under multiaxial loading // Int. J. Fatigue. - 2011. - Vol. 33, no. 2. - P. 153-165. DOI
30. Hashiguchi K. On the linear relations of V - ln p and ln v - ln p for isotropic consolidation of soils // Int. J. Numer. Anal. Met. - 1995. - Vol. 19, no. 5. - P. 367-376. DOI
31. Schofield A.N., Wroth C.P. Critical state soil mechanics. - London: McGraw-Hill, 1968.
32. Van Eekelen S.J.M., van den Berg P. The delft egg model, a constitutive model for clay // DIANA Computational Mechanics’94. - 1994. - P. 103-116. DOI
33. Dafalias Y.F., Herrmann L.R. A bounding surface soil plasticity model // Proc. Int. Symp. Soils Cyclic Trans. Load. - University of Swansea, U.K., January, 1980. - P. 335-345.
34. Auricchio F., Taylor R.L. A return-map algorithm for general associative isotropic elasto-plastic materials in large deformation regimes // Int. J. Plasticity. - 1999. - Vol. 15, no. 12. - P. 1359-1378. DOI
35. Auricchio F., Taylor R.L., Lubliner J. Application of a return map algorithm to plasticity models // Computational Plasticity / Eds. D.R.J. Owen et al. - CIMNE, Barcelona, 1992. - P. 2229-2248.
36. Callari C., Auricchio F., Sacco E. A finite-strain cam-clay model in the framework of multiplicative elasto-plasticity // Int. J. Plasticity. - 1998. - Vol. 14, no. 12. - P. 1155-1187. DOI
37. Simo J.C., Meschke G. A new class of algorithms for classical plasticity extended to finite strains. Application to geomaterials // Comput. Mech. - 1993. - Vol. 11, no. 4. - P. 253-278. DOI
38. Drucker D.C, Gibson R.E., Henkel D.J. Soil mechanics and work hardening theories of plasticity // Trans. ASCE. - 1957. - Vol. 122. - P. 338-346.
39. Brace W.F., Paulding B.W., Scholz C.H. Dilatancy in the fracture of crystalline rocks // J. Geophys. Res. - 1966. - Vol. 71, no. 16. - P. 3939-3953. DOI
40. DiMaggio F.L., Sandier I.S. Material model for granular soils // J. Eng. Mech. Div-ASCE. - 1971. - Vol. 97. - P. 935-950.
41. Simo J.C., Hughes T.J.R. Computational inelasticity. - New York: Prentice-Hall, 1998.
42. Fossum A.F., Fredrich J.T. Estimation of constitutive parameters for the Belridge Diatomite, South Belridge Diatomite field // SAND98-1407, Sandia National Laboratories. - Albuquerque, New Mexico, 1998. - 32 p.
43. Jefferies M.G., Shuttle D.A. Norsand: calibration and use. Prediction, analysis and design in geomechanical applications // Proc. of 11th Int. Conf. of IACMAG, Torino, Italy, June 19-24, 2005. - Vol. 1. - P. 345-352.
44. Kuznetsov S.V. Lamb waves in anisotropic plates (review) // Acoust. Phys. - 2014. - Vol. 60, no. 1. - P. 95-103. DOI
45. Corapcioglu Y., Uz T. Constitutive equations for plastic deformation of porous materials // Powder Technol. - 1978. - Vol. 21, no. 2. - P. 269-274. DOI
46. Jenike A.W., Sield R.T. On the plastic flow of Coulomb solids beyond original failure // J. Appl. Mech. - 1959. - Vol. 26, no. 4. - P. 599-602.
47. Perzyna P. The constitutive equations for rate sensitive plastic materials // Quart. Appl. Math. - 1963. - Vol. 20, no. 4. - P. 321-332.
48. Sloan S.W. Substepping schemes for the numerical integration of elastoplastic stress-strain relations // Int. J. Numer. Meth. Eng. - 1989. - Vol. 24, no. 3. - P. 893-911. DOI
49. Potts D.M., Zdravkovic L. Finite element analysis in geotechnical engineering: theory. - London: Thomas Telford, 1999. - 440 p.
50. Wood D.M. Geotechnical modelling. - London: Spon Press, 2004.
51. Aboim C., Roth W. Bounding surface plasticity theory applied to cyclic loading of sand // Int. Symposium on Numerical Models in Geomechanics, 1982. - P. 65-72.
52. Hirai H. An elastoplastic constitutive model for cyclic behaviour of sands // Int. J. Numer. Anal. Met. - 1987. - Vol. 11, no. 5. - P. 503-520. DOI
53. Zienkiewicz O., Mroz Z. Generalized plasticity formulation and application to geomechanics // Mechanics of Engineering Materials / Eds. C.S. Desai, R.H. Gallaher. - New York: Wiley, 1984. - P. 655-679.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.